asic]
www.terasic.com

-,o' ~..!". r_H-f'.f"

Development Board
User Manual

Preliminary Version

i

iy

-,

—_————

BN
g lﬂ'r"
g lﬂ;
lﬁ;!!
g
0 enf
58 agff
iﬁlﬂé

anp

www.terosic.com [
i | f :
f I AROOhML]

A el
PONK
AT OREM)

| MUy |

-1}
f=

i R
"y o
- Wl e =
- o a

© 2008 by Terasi

Terasic PCI-X Development Board

Chapter 1 PCI PaCKAQRccvoiieiieisie et 1
1.1 PaCKage CONTENLS......cccveiiiiieiiieiie e see ettt e e e e sre e nnes 1
1.2 GettiNg HelP ..o e 1
1.3 REVISION HISIOY ..cveeiiieiiiie ittt 2

Chapter 2 INtrOAUCTION..........oiiiiiiii et 3
2.1 General DESCHIPLIONccuveiiieee et neens 3
2.2 Layout and COMPONENTSccuveueieerieeieciesee e eee e sre e sre e e e nresneenns 3
2.3 Block Diagram of the PCI Board...........cccccoevievenieiiesc e 5
2.4 Power-up the PCEBOArdccccoiveiiiiieieeree e sie s 6

Chapter 3 Components & INTErfaCESccooveiieiiie e 7
300 O [0 Tod {0 O [{1V | USSP 7

3.1.1 Clock & Programmable PLLccccviiieiieiice e 8
3.2 SWITCR L s 8
3.3 HSTC EXPansion CONNECLOISccvevuveieiiesieeieseesieesiesreesieeaesseessneseesneeses 9
34 Off-Chip MEMOIY ..c.veeeeceie ettt ns 17

341 DDR2 SO-DIMM MOUIE.........ccoiiiiiiiiinieiinieseeee e 17

Chapter 4 Setup PCI BOArdcociiiiiieeiie e 21
4.1 System ReQUITEMENTcciveiieie et 21
4.2 Hardware Installation: PCI BOArd..........cccccoveiiiinininiiieiee s 21
4.3 Software Installation: PCl Kernel DIIVErccccooiiiiinenenciesiseseseeins 22
4.4 InStall LiCENSE FIleceiiiiieiiceeeee s 23
T B T - Vo | 10 -1 SRS 23

Chapter 5 PCI System BUIIAEEoouiiiiiiiiiie e 24
51 INEFOAUCTION ... 24
5.2 QUArtUS TOP DESION ..ocveeieieiieeie ettt ns 25
5.3 BUI-IN LOGIC...iiiiiiieii ettt 26
5.4 Save ConfIgUIrAtioncccciveveeiieiieieeie s ae e 27
55 Generated COUR.......cccouiiiieieiiesie st 27

Chapter 6 Host Software Library and Utility ..o 30
6.1 PCI SOftWare STACKcccoiiiiiiiiiicee e 30
6.2 Data Structure in TERASIC _APLN c..ccoiiiiiiiceece e 31
6.3 API LiSt Of TERASIC_APLDLL......coeiiiiiiiiciceseeee e 31
6.4 API Description of TERASIC DLL....cccocoiveiiiieieee e 32

6.5 PCI Control Panel Utility.........ccoooeiiieiiiieieceee e 38

Chapter 7 Reference DESIGNccveuiiieiieieeie ettt 41
7.1 Remote CONrOl LEDccooiiiiiiiiicieeee e 41
7.2 BUON TRQ .ottt 46
7.3 DDRZ ACCESSceeieeiieiesieesire ettt re e n e e 50

Chapter 8 Multi-Port Memory Controller ... 55
8.1 Principle of Read/Write POrt..........cccoviieiiiiice e 55
8.1.1 WWIEIEE PO ... 55
8.1.2 REAA POI.......iiiiitieiieeee bbb 56
8.2 POt INTEITACE.i i 57
8.2.1 SIMPIE WIITE POI.....eiieiecieeee e 58
8.2.2 SIMPIE REA POIT ... e 59
8.2.3 ENNANCEA POt ... 60

Chapter 9 PCI Local INTErfaCeccooveiiiiieeiie e 62
9.1 PCI Local Write/Read INterface.........cccoviererenininieieee e, 62
9.2 PCEINTEITUPT ..o 63

Appendix A Programming the Serial Configuration device...........ccccocevvviinnnnnn 66

Rasic

www. terasic.com

Chapter 1
PCI Package

The PCI package contains all components needed to use the PCI board in conjunction with a
computer that runs the Microsoft Windows software.

1.1 Package contents

The PCI Package includes:
* Cyclone 111 PCI development board
* Terasic USB Blaster
* USB Cable for FPGA programming and control
* CD-ROM containing the User Manual, the Control Panel utility, the PCI System
Builder and reference designs.
« THDB HLB
 THDB_HFF
e Screw and Copper Pillar Package
* Power Cable

1.2 Getting Help

Here are the addresses where you can get help if you encounter problems:

e Altera Corporation
101 Innovation Drive
San Jose, California, 95134 USA
Email: mysupport@altera.com

e Terasic Technologies
No. 356, Sec. 1, Fusing E. Rd.
Jhubei City, HsinChu County, Taiwan, 302
Email: support@terasic.com

Webh: www.terasic.com

mailto:mysupport@altera.com
mailto:support@terasic.com
http://www.terasic.com/

1.3 Revision History

Date

Version

Changes

2008.12

First publication

Revision History

Rasic

www.Cerasic.com

Rasic

www. terasic.com

Chapter 2
Introduction

This chapter provides an introduction of the PCI Board features and design characteristic.

2.1 General Description

The Cyclone® 111 PCI development board provides a hardware platform for developing and
prototyping low-power, high-performance, logic-intensive PCI-based designs. The board provides a
high-density of the memory to facilitate the design and development of FPGA designs which need
huge memory storage, and also includes Low-\oltage Differential Signaling (LVDS) interface of
the High-Speed Terasic Connectors (HSTCs) for extra high-speed interface application.

Based on Cyclone® 111 FPGA and using Altera MegaCore functions, Terasic IP and the reference
design, Cyclone 111 PCI Development Board allows users to quickly implement the design and
solve design problems that require time-consuming, custom solutions.

Finally, to simplify the design process, we provide the software which calls “PCI System Builder”
that provides a convenient way to build interfaces between host PC and user logic on FPGA, and
also supports the interface of multi-port controller which allows shared access to a unique external
memory. For more details about PCI System Builder, refer to Chapter 4 PCI System Builder.

2.2 Layout and Components

A photograph of the Cyclone® I11 PCI development board is shown in Figure 2.1 and 2.2. They
depict the layout of the board and indicate the location of the connectors and key components.

JTAG LED Programmable PLL
Button I .
GPIO %‘ FHTEET g 5 B Standalone
'- LA - Power Input
. ter BT
i =
H Power
TGI8l /NDERA : 4 Module
HSTC pn] | == B 3| °
/NEERA g e = Cyclone® 111
Connector i, oo : o
om 3C120 FPGA
_ DGR [
T 5 JE e s Cyclone® 11
e 3C25 FPGA

Figure 2.1 Cyclone® I11 PCI development board

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=%E5%AF%86%E5%BA%A6

DDR2 SO-DIMM

so00R0
eseeonm

Figure 2.2 Cyclone® I11 PCI development board

The following hardware is provided on the PCI board:
B Altera Cyclone® I11 3C120 FPGA device
e 119,088 logic elements (LES)
e 3,981,312 total RAM bits

e 288 18 x 18 multiplier blocks
B Altera Cyclone® I11 3C25 FPGA device (PCI Bridge).

B Altera Serial Configuration device
e EPCS64
e EPCS16

B On-board memories

e Up to 4GBytes DDR2 SO-DIMM
B Three HSTCs
e 120 differential pair signals

® 20 dedicated clock signals (8 differential pair & 4 single-end)
B PCI bus interfaces.

These features allow the user to implement the designs that need an enormous memory and
high-speed data transfer. In addition to these hardware features, the PCI board has software support
for PCI bus DMA, bus interrupt functions and a control panel facility to access various components.

In order to use the TC3B-PCI board, the user has to be familiar with the Quartus Il software. The
necessary knowledge can be acquired by reading the tutorials Quartus Il Introduction (which exists
in three versions based on the design entry method used, namely Verilog, VHDL or schematic
entry).

Layout and Components 4

Rasic

www.Cerasic.com

www.Cerasic.com

2.3 Block Diagram of the PCI Board

Figure 2.3 gives the high-level block diagram of the PCI board. To provide maximum flexibility for
the user, all connections are made through the Cyclone® 111 FPGA device. Thus, the user can
configure the FPGA to implement any system design.

Uptp
aGBytes

DDR2
SO-DIMM

Bus

Dife. Clk
Input:2 Diff.CTk
Diff. Clk Inputx2
Outputx2 Diff. Clk
Single-End Outputx2
. . Clk input & Output Alm Sinale-End .
Hi-Speed Hi-Speed ; ® Cikinput e ouputsr Hi-Speed
Terasic ShareBuswith Terasic @ Terasic
Connector ™" Connector CycloneT lll Y/ E0
3 2 1

. 3C120 X120

Differential
Pair x60 Differentiad

Pair x60 e

uptp
200Mhz

50Mhz Reconfig.
0sC ’ PLL

Cyclonef'éif’m
3C25

100Mhz
0SC

64 Bits

Figure 2.3 High level block diagram of the PCI board

Following is more detailed information about the blocks in Figure 2.3:
Cyclone® 111 3C120 FPGA

e 119,088 LEs

e 432 M4K RAM blocks

e 3,981,312 total RAM bits

e 288 18x18 multiplier blocks

e Four phase locked loops (PLLS)
Cyclone® 111 3C25 FPGA

o 24,624 LEs

e 66 M4K RAM blocks

e 608,256 total RAM bits

e 66 18x18 multiplier blocks
e FourPLLs

Serial Configuration device
e Altera’s EPCS64 & EPCS16 serial configuration device
e In-system programming mode via JTAG interface ©

DDR2 SDRAM
e 64-bits DDR2 SO-DIMM
e Up to 4GBytes

LED & button
e 4 user-controlled LEDs
e 2 user-controlled Buttons

Clock inputs
e Programmable PLL (80kHz ~ 200MHz)
e 100MHz oscillator

Three 180-pin HSTC expansion connectors
e 260 Cyclone® Il 1/O pins
e High-Speed connector up to GHz frequency

2.4 Power-up the PCI Board

The PCI Board contains the following ways to power-up:
1. Plug into PCI bus
2. Connect external power cable

After the PCI board powers up, the on-board configuration device which ships pre-programmed
with the factory design, automatically configures the Cyclone® 111 device and the user-controlled

LEDs will flash in a “Knight Rider” pattern.

Power-up the PCI Board 6

Rasic

www.Cerasic.com

Rasic

www. terasic.com

Chapter 3
Components & Interfaces

This chapter describes functions of the components and interfaces on the development board,
including detailed pin-out information to enable designers to create custom FPGA designs.

3.1 Clocking Circuitry

In order to achieve the design requirement which needs different frequency clock sources, the
development board provides two clock sources that connect to dedicated clock input pins of
Cyclone® 111 FPGA. One of the clock sources is a 100MHz oscillator and another is a
programmable PLL.

For LVDS clocking, the expansion connectors (HSTCs) include the dedicated differential clock
inputs and PLL output pins of Cyclone® 111 FPGA to implement high-speed clocking interface.
Figure 3.1 shows the clocking diagram of the PCI board.

DDR2 SO-DIMM

HSTC2 HSTC3

2
©0
2
2
©)
50 MHz OSC < LYDS

Progr;xlr‘leable LVTTL

o LVDS

100 MHz OSC

LVTTL 3C120 @ LVDS 2
< > L LVDS >

'gw

3
))| [

]

HSTC1

Figure 3.1 Clocking diagram of the PCI Board

@ : Dedicated PLL Output

: Dedicated Clock Input

@ : Differential 10

3.1.1 Clock & Programmable PLL

The Cyclone® 111 PCI development board provides a programmable PLL which is drove by a 50
MHz oscillator and utilizes 2-wire serial interface SDAT and SCLK that operates up to 400
kbits/sec in read or write mode. The output frequency range of the PLL is 80 KHz to 200 MHz. A
block diagram of the clock and on-board PLL showing connections to the Cyclone 11l FPGA is
given in Figure 3.2. The associated pin assignments appear in Table 3.1

PLL CLK
Programmable | _ pLL SCL
PLL _ PLL SDA
= Cyclone?lﬂ’
3C120
100 MHz OSC_100

Oscillator

Figure 3.2 Block diagram of the clock and on-board PLL

Signal Name | FPGA Pin No. Description
0OSC_100 PIN_AG14 100 MHz Oscillator
PLL_CLK PIN_B15 PLL Clock Output
PLL_SCL PIN_AB24 PLL Serial Interface - Clock
PLL_SDA PIN_AB23 PLL Serial Interface - Data

Table 3.1 Pin assignments of clock and on-board PLL

3.2 Switch

The Switch of Cyclone 111 PCI Board is used to select the expansion connectors 10 voltage. Table
3.2 lists voltage selection by jumper.

Expansion Pin number

10 Voltage 1 2 3 4
1.2v On off off Off
1.5V off off off Off
1.8V off Oon off Off
2.5V off off on Off
3.3V off off off on

Table 3.2 Woltage selection of the expansion 10

Switch 8

Rasic

www.Cerasic.com

www.Cerasic.com

3.3 HSTC Expansion Connectors

The Cyclone® 111 PCI development board contains three HSTC connectors (HSTC1, HSTC2 and
HSTC3). The HSTC2 fully shares pins with HSTC3. These expansion connectors have total 240
bi-directional 1/0s, 10 dedicated clock inputs and 10 PLL outputs of the Cyclone® Il FPGA, and
also provides DC +12V, DC +5V, DC +3.3V and GND pins. Furthermore, the voltage level of the
I/0 pins on the expansion connectors can be adjusted to 3.3V, 2.5V, 1.8V, 1.5V, 1.2V by using
on-board switch.

High-speed differential 1/0 standards have become popular in high-speed interfaces because of their
significant advantages over single-ended 1/O standards. In response to the current market need, the
PCI board supports LVDS channel up to 60 transmitters and 60 receivers on the expansion
connectors. The channels had already achieved data rates of 600Mbps on Cyclone® 111 PCI
development board. In summary, these features of the expansion connectors give applications the
most flexibility for a variety of users. Figure 3.3 shows the schematic of HSTC expansion connector.
Table 3.3 and 3.4 gives the pin assignment.

12v veesa

HSTC1_PSNT_n
HSTCI1_CLKIN_n1
HSTCI1_CLKIN_p1

HSTC1_CLKOUT n1
HSTC1_CLROUT p1

HSTC1_RX_no
HSTCT_RX_p0

HSTCI1_TX_pOo

HSTC1_RX n1 ! HSTC1_TX_n1
HSTC1_RX_p1 1 HSTC1_TX_p1

HSTC1_TX n2

HSTC1_TX n3
HSTC1_TX_p5

HSTC1_RX_n4 34 [HSTC1_TX_n4
HSTCI1_RX_pa [FsTci TX pa

HSTC1_RX_n& [HSTC1_TX_ns
HSTC1_RX_p5 1 HSTCI1_TX_p5
C: P T—

[HSTC1 TX ne
HSTCT_TX_p&

HSTC1_RX_n6
HSTC1_RX_p6

HSTC1_RX_n7 2 [HSTC1_TX_n7
HSTC1_RX_p7 51 HSTC1_TX_p7
T —

HSTC1 RX n8
T HSTCi1_RX_pe |

HSTC1 TX ns
HSTCT_TX_ps

HSTC1_CLKIN_n2
HSTC1_CLRIN_p2

HSTC1_TX _po

HSTC1 HSTC1_TX_n10
—HASTCi_ pio__| HSTCT_TX_pi0

[_HSTC1_TX ni1
HSTCT_TX_pi1

HSTC1_TX_n12
HSTC1_TX_p12

HSTC1_TX_n13
HSTCI_TX_p13

7
HSTC1_RX_n14 4
HSTC1_R*_pi14

HSTC1_RX nis
NSTC1_RX_p15

=

s
HSTC1_RX nis [
NMSTC1_RX_p16 ©

HST -
TSTCI_TX_p1

HSTC1_RX_n1r
HSTC1_RX _p17 =

HSTC1_1X_n1/
HSTCI1 TX pi7

(e (nle (glls [o/le e'lelel(g (v (¢ (o][s [2ile (¢l{p Lo} e [0 [¢ (¢ 8

BBt A o A At b At A bt Bt b Bt
0]t 60| 0} i 0] 25|])

Bllsfsitefellafolle fofelelle o fo [5'fe fe'le s

Figure 3.3 Schematic of the HSTC expansion connector

Schematic Signal Name

Connector pin no.

FPGA Pin Name

HSTC3_CLKIN_nO | HSTC2_CLKIN_nO 4 PIN_J1
HSTC3_CLKIN_pO | HSTC2_CLKIN_pO 6 PIN_J2
HSTC3_RX_n0 HSTC2_RX_n0 10 PIN_C2
HSTC3_RX_p0 HSTC2_RX_p0 12 PIN_D3
HSTC3_RX_n1 HSTC2_RX_n1 16 PIN_D1
HSTC3_RX_p1 HSTC2_RX_pl 18 PIN_D2
HSTC3_RX_n2 HSTC2_RX_n2 22 PIN_F3
HSTC3_RX_p2 HSTC2_RX_p2 24 PIN_E3
HSTC3_RX_n3 HSTC2_RX_n3 28 PIN_F1
HSTC3_RX_p3 HSTC2_RX_p3 30 PIN_F2
HSTC3_RX_n4 HSTC2_RX_n4 34 PIN_G3
HSTC3_RX_p4 HSTC2_RX_p4 36 PIN_G4
HSTC3_RX_n5 HSTC2_RX_n5 40 PIN_H3
HSTC3_RX_p5 HSTC2_RX_p5 42 PIN_H4
HSTC3_RX_né HSTC2_RX_n6 46 PIN_J3
HSTC3_RX_p6 HSTC2_RX_p6 48 PIN_J4
HSTC3_RX_n7 HSTC2_RX_n7 52 PIN_G5
HSTC3_RX_p7 HSTC2_RX_p7 54 PIN_G6
HSTC3_RX_n8 HSTC2_RX_n8 58 PIN_N3
HSTC3_RX_p8 HSTC2_RX_p8 60 PIN_N4
HSTC3_CLKIN_nl1 | HSTC2_CLKIN_n1 64 PIN_Y1
HSTC3_CLKIN_pl | HSTC2_CLKIN_p1 66 PIN_Y2
HSTC3_RX_n9 HSTC2_RX_n9 70 PIN_H24
HSTC3_RX_p9 HSTC2_RX_p9 72 PIN_H23
HSTC3_RX_n10 HSTC2_RX_n10 76 PIN_G26
HSTC3_RX_p10 HSTC2_RX_p10 78 PIN_G25
HSTC3_RX_nil HSTC2_RX_ni1l 82 PIN_J24
HSTC3_RX_p11 HSTC2_RX_p11 84 PIN_J23
HSTC3_RX_n12 HSTC2_RX_n12 88 PIN_K22
HSTC3_RX_p12 HSTC2_RX_p12 90 PIN_K21
HSTC3_RX_n13 HSTC2_RX_n13 94 PIN_L22
HSTC3_RX_p13 HSTC2_RX_p13 96 PIN_L21
HSTC3_RX_nl14 HSTC2_RX_n14 100 PIN_V22
HSTC3_RX_pl4 HSTC2_RX_pl4 102 PIN_U22
HSTC3_RX_n15 HSTC2_RX_n15 106 PIN_M1
HSTC3_RX_p15 HSTC2_RX_p15 108 PIN_M2
HSTC3_RX_n16 HSTC2_RX_n16 112 PIN_P1
HSTC Expansion Connectors 10

Rasic

www. terasic.com

Rasic

www. terasic.com

HSTC3_RX_p16 HSTC2_RX_p16 114 PIN_P2
HSTC3_RX_n17 HSTC2_RX_n17 118 PIN_R1
HSTC3_RX_p17 HSTC2_RX_p17 120 PIN_R2
HSTC3_CLKIN_2 | HSTC2_CLKIN_2 124 PIN_R5
HSTC3_RX_n18 HSTC2_RX_ni8 134 PIN_T3
HSTC3_RX_p18 HSTC2_RX_p18 136 PIN_T4
HSTC3_RX_n19 HSTC2_RX_n19 138 PIN_R6
HSTC3_RX_p19 HSTC2_RX_p19 140 PIN_R7
HSTC3_RX_n20 HSTC2_RX_n20 142 PIN_AA3
HSTC3_RX_p20 HSTC2_RX_p20 144 PIN_AA4
HSTC3_RX_n21 HSTC2_RX_n21 146 PIN_R4
HSTC3_RX_p21 HSTC2_RX_p21 148 PIN_R3
HSTC3_RX_n22 HSTC2_RX_n22 150 PIN_V5
HSTC3_RX_p22 HSTC2_RX_p22 152 PIN_V6
HSTC3_RX_n23 HSTC2_RX_n23 154 PIN_U4
HSTC3_RX_p23 HSTC2_RX_p23 156 PIN_U3
HSTC3_RX_n24 HSTC2_RX_n24 158 PIN_AC1
HSTC3_RX_p24 HSTC2_RX_p24 160 PIN_AC2
HSTC3_RX_n25 HSTC2_RX_n25 162 PIN_V7
HSTC3_RX_p25 HSTC2_RX_p25 164 PIN_V8
HSTC3_RX_n26 HSTC2_RX_n26 166 PIN_AD1
HSTC3_RX_p26 HSTC2_RX_p26 168 PIN_AD2
HSTC3_RX_n27 HSTC2_RX_n27 170 PIN_W3
HSTC3_RX_p27 HSTC2_RX_p27 172 PIN_W4
HSTC3_RX_n28 HSTC2_RX_n28 174 PIN_AE1
HSTC3_RX_p28 HSTC2_RX_p28 176 PIN_AE2
HSTC3_RX_n29 HSTC2_RX_n29 178 PIN_AD3
HSTC3_RX_p29 HSTC2_RX_p29 180 PIN_AC3
HSTC3_CLKOUT_n0|HSTC2_CLKOUT_no 3 PIN_G1
HSTC3_CLKOUT_p0|HSTC2_CLKOUT_p0O 5 PIN_G2
HSTC3_TX_nO HSTC2_TX_n0 9 PIN_K1
HSTC3_TX_pO HSTC2_TX_pO 11 PIN_K2
HSTC3_TX_ni HSTC2_TX_nl 15 PIN_K3
HSTC3_TX_p1 HSTC2_TX_p1 17 PIN_K4
HSTC3_TX_n2 HSTC2_TX_n2 21 PIN_L8
HSTC3_TX_p2 HSTC2_TX_p2 23 PIN_K8
HSTC3_TX_n3 HSTC2_TX_n3 27 PIN_K7
HSTC3_TX_p3 HSTC2_TX_p3 29 PIN_J7

11

HSTC3_TX_n4 HSTC2_TX_n4 33 PIN_L6
HSTC3_TX_p4 HSTC2_TX_p4 35 PIN_L7
HSTC3_TX_n5 HSTC2_TX_n5 39 PIN_J5
HSTC3_TX_p5 HSTC2_TX_p5 41 PIN_J6
HSTC3_TX_n6 HSTC2_TX_n6 45 PIN_M3
HSTC3_TX_p6 HSTC2_TX_p6 47 PIN_M4
HSTC3_TX_n7 HSTC2_TX_n7 51 PIN_L3
HSTC3_TX_p7 HSTC2_TX_p7 53 PIN_L4
HSTC3_TX_n8 HSTC2_TX_n8 57 PIN_M7
HSTC3_TX_p8 HSTC2_TX_p8 59 PIN_M8
HSTC3_CLKOUT_n1|HSTC2_CLKOUT_n1 63 PIN_L1
HSTC3_CLKOUT_p1|HSTC2_CLKOUT_pl 65 PIN_L2
HSTC3_TX_n9 HSTC2_TX_n9 69 PIN_F25
HSTC3_TX_p9 HSTC2_TX_p9 71 PIN_F24
HSTC3_TX_n10 HSTC2_TX_n10 75 PIN_G24
HSTC3_TX_p10 HSTC2_TX_p10 77 PIN_G23
HSTC3_TX_nil HSTC2_TX_n1l 81 PIN_K26
HSTC3_TX_pil HSTC2_TX_pil 83 PIN_K25
HSTC3_TX_n12 HSTC2_TX_n12 87 PIN_U26
HSTC3_TX_p12 HSTC2_TX_pi12 89 PIN_U25
HSTC3_TX_n13 HSTC2_TX_n13 93 PIN_V26
HSTC3_TX_p13 HSTC2_TX_p13 95 PIN_V25
HSTC3_TX_n14 HSTC2_TX_n14 99 PIN_V24
HSTC3_TX_pl4 HSTC2_TX_pl4 101 PIN_V23
HSTC3_TX_n15 HSTC2_TX_n15 105 PIN_W21
HSTC3_TX_p15 HSTC2_TX_pi15 107 PIN_V21
HSTC3_TX_n16 HSTC2_TX_n16 111 PIN_Y22
HSTC3_TX_pl16 HSTC2_TX_p16 113 PIN_W22
HSTC3_TX_ni17 HSTC2_TX_n17 117 PIN_Y7
HSTC3_TX_p17 HSTC2_TX_p17 119 PIN_WS8
HSTC3_CLKOUT_2 | HSTC2_CLKOUT_2 123 PIN_AB3
HSTC3_TX_n18 HSTC2_TX_n18 133 PIN_V1
HSTC3_TX_p18 HSTC2_TX_p18 135 PIN_V2
HSTC3_TX_n19 HSTC2_TX_n19 137 PIN_U1
HSTC3_TX_p19 HSTC2_TX_p19 139 PIN_U2
HSTC3_TX_n20 HSTC2_TX_n20 141 PIN_V3
HSTC3_TX_p20 HSTC2_TX_p20 143 PIN_V4
HSTC3_TX_n21 HSTC2_TX_n21 145 PIN_US
HSTC3_TX_p21 HSTC2_TX_p21 147 PIN_U6
HSTC Expansion Connectors 12

Rasic

www. terasic.com

Rasic

www. terasic.com

HSTC3_TX_n22 HSTC2_TX_n22 149 PIN_Y5
HSTC3_TX_p22 HSTC2_TX_p22 151 PIN_Y6
HSTC3_TX_n23 HSTC2_TX_n23 153 PIN_W1
HSTC3_TX_p23 HSTC2_TX_p23 155 PIN_W2
HSTC3_TX_n24 HSTC2_TX_n24 157 PIN_AB1
HSTC3_TX_p24 HSTC2_TX_p24 159 PIN_AB2
HSTC3_TX_n25 HSTC2_TX_n25 161 PIN_Y3
HSTC3_TX_p25 HSTC2_TX_p25 163 PIN_Y4
HSTC3_TX_n26 HSTC2_TX_n26 165 PIN_AA5
HSTC3_TX_p26 HSTC2_TX_p26 167 PIN_AA6
HSTC3_TX_n27 HSTC2_TX_n27 169 PIN_ABS5
HSTC3_TX_p27 HSTC2_TX_p27 171 PIN_AB6
HSTC3_TX_n28 HSTC2_TX_n28 173 PIN_AF2
HSTC3_TX_p28 HSTC2_TX_p28 175 PIN_AE3
HSTC3_TX_n29 HSTC2_TX_n29 177 PIN_AC4
HSTC3_TX_p29 HSTC2_TX_p29 179 PIN_AC5

Table 3.3 Pin assignments of the HSTC2 and HSTC3

Schematic Signal Name

Board Reference

FPGA Pin Name

HSTC1_CLKIN_nO 4 PIN_J28

HSTC1_CLKIN_pO 6 PIN_J27
HSTC1_RX_nO 10 PIN_L24
HSTC1_RX_pO 12 PIN_L23
HSTC1_RX_nl 16 PIN_R21
HSTC1_RX_p1l 18 PIN_P21
HSTC1_RX_n2 22 PIN_C27
HSTC1_RX_p2 24 PIN_D26
HSTC1_RX_n3 28 PIN_R23
HSTC1_RX_p3 30 PIN_R22
HSTC1_RX_n4 34 PIN_E26
HSTC1_RX_p4 36 PIN_F26
HSTC1_RX_n5 40 PIN_H26
HSTC1_RX_p5 42 PIN_H25
HSTC1_RX_né 46 PIN_AA13
HSTC1_RX_p6 48 PIN_Y13
HSTC1_RX_n7 52 PIN_AB14
HSTC1_RX_p7 54 PIN_AA14
HSTC1_RX_n8 58 PIN_AD11

13

HSTC1_RX_p8 60 PIN_AC11
HSTC1_CLKIN_n1 64 PIN_Y28
HSTC1_CLKIN_p1 66 PIN_Y27

HSTC1_RX_n9 70 PIN_AA10

HSTC1_RX_p9 72 PIN_AAS8

HSTC1_RX_n10 76 PIN_ABS
HSTC1_RX_p10 78 PIN_AB9
HSTC1_RX_nil 82 PIN_AB12
HSTC1_RX_pi11 84 PIN_AC12
HSTC1_RX_n12 88 PIN_AC7
HSTC1_RX_p12 90 PIN_ADS
HSTC1_RX_n13 94 PIN_AF11
HSTC1_RX_p13 96 PIN_AE11
HSTC1_RX_nl4 100 PIN_AF14
HSTC1_RX_pl4 102 PIN_AE14
HSTC1_RX_n15 106 PIN_AF12
HSTC1_RX_p15 108 PIN_AE12
HSTC1_RX_n16 112 PIN_AH10
HSTC1_RX_p16 114 PIN_AG10
HSTC1_RX_n17 118 PIN_AHS
HSTC1_RX_p17 120 PIN_AGS8
HSTC1_CLKIN_2 124 PIN_L26
HSTC1_RX_n18 134 PIN_AC10
HSTC1_RX_p18 136 PIN_AB10
HSTC1_RX_n19 138 PIN_ACS8
HSTC1_RX_p19 140 PIN_AB7
HSTC1_RX_n20 142 PIN_AH6
HSTC1_RX_p20 144 PIN_AG6
HSTC1_RX_n21 146 PIN_AH12
HSTC1_RX_p21 148 PIN_AG12

HSTC1_RX_n22 150 PIN_AFS8

HSTC1_RX_p22 152 PIN_AES

HSTC1_RX_n23 154 PIN_AF13

HSTC1_RX_p23 156 PIN_AE13

HSTC1_RX_n24 158 PIN_AH4

HSTC1_RX_p24 160 PIN_AG4

HSTC1_RX_n25 162 PIN_AH11

HSTC1_RX_p25 164 PIN_AG11

HSTC1_RX_n26 166 PIN_AH7

HSTC Expansion Connectors 14

Rasic

www. terasic.com

Rasic

www. terasic.com

HSTC1_RX_p26 168 PIN_AG7
HSTC1_RX_n27 170 PIN_AF10
HSTC1_RX_p27 172 PIN_AE10
HSTC1_RX_n28 174 PIN_AA12
HSTC1_RX_p28 176 PIN_Y12
HSTC1_RX_n29 178 PIN_AF7
HSTC1_RX_p29 180 PIN_AE7
HSTC1_CLKOUT no 3 PIN_J26
HSTC1_CLKOUT_pO 5 PIN_J25
HSTC1_TX_nO 9 PIN_D28
HSTC1_TX_pO 11 PIN_D27
HSTC1_TX_nl 15 PIN_E28
HSTC1_TX_pl 17 PIN_E27
HSTC1_TX_n2 21 PIN_F28
HSTC1_TX_p2 23 PIN_F27
HSTC1_TX_n3 27 PIN_G28
HSTC1_TX_p3 29 PIN_G27
HSTC1_TX_n4 33 PIN_K28
HSTC1_TX_p4 35 PIN_K27
HSTC1_TX_n5 39 PIN_M28
HSTC1_TX_p5 41 PIN_M27
HSTC1_TX_n6 45 PIN_P28
HSTC1_TX_p6 47 PIN_P27
HSTC1_TX_n7 51 PIN_L28
HSTC1_TX_p7 53 PIN_L27
HSTC1_TX_n8 57 PIN_M26
HSTC1_TX_p8 59 PIN_M25
HSTC1_CLKOUT _nl 63 PIN_AF5
HSTC1_CLKOUT pl 65 PIN_AE5
HSTC1_TX_n9 69 PIN_N26
HSTC1_TX_p9 71 PIN_N25
HSTC1_TX_n10 75 PIN_P26
HSTC1_TX_pl0 77 PIN_P25
HSTC1_TX_nil 81 PIN_R28
HSTC1 TX_pil 83 PIN_R27
HSTC1_TX_ni2 87 PIN_T26
HSTC1_TX_p12 89 PIN_T25
HSTC1_TX_n13 93 PIN_R26

15

HSTC1_TX_p13 95 PIN_R25
HSTC1_TX_n14 99 PIN_U28
HSTC1_TX_pi4 101 PIN_U27
HSTC1_TX_ni5 105 PIN_V28
HSTC1_TX_p15 107 PIN_V27
HSTC1_TX_n16 111 PIN_W27
HSTC1_TX_p16 113 PIN_W28
HSTC1_TX_ni7 117 PIN_T22
HSTC1 TX_pi7 119 PIN_T21
HSTC1_CLKOUT 2 123 PIN_H22
HSTC1_TX_ni8 133 PIN_W26
HSTC1_TX_pi8 135 PIN_W25
HSTC1_TX_n19 137 PIN_AC28
HSTC1_TX_p19 139 PIN_AC27
HSTC1_TX_n20 141 PIN_Y26
HSTC1_TX_p20 143 PIN_Y25
HSTC1_TX_n21 145 PIN_AA26
HSTC1_TX_p21 147 PIN_AA25
HSTC1_TX_n22 149 PIN_AB28
HSTC1_TX_p22 151 PIN_AB27
HSTC1_TX_n23 153 PIN_AB26
HSTC1_TX_p23 155 PIN_AB25
HSTC1_TX_n24 157 PIN_AD28
HSTC1_TX_p24 159 PIN_AD27
HSTC1_TX_n25 161 PIN_AD26
HSTC1_TX_p25 163 PIN_AC26
HSTC1_TX_n26 165 PIN_AF27
HSTC1_TX_p26 167 PIN_AE26
HSTC1_TX_n27 169 PIN_AE28
HSTC1_TX_p27 171 PIN_AE27
HSTC1_TX_n28 173 PIN_AC25
HSTC1_TX_p28 175 PIN_AC24
HSTC1_TX_n29 177 PIN_Y24
HSTC1_TX_p29 179 PIN_Y23

Table 3.4 Pin assignments of the HSTC1

HSTC Expansion Connectors

16

Rasic

www. terasic.com

Rasic

www. terasic.com

3.4 Off-Chip Memory

The Cyclone® 111 PCI development board provides the large-capacity and high-speed memory
interface.

3.4.1 DDR2 SO-DIMM Module

The board has a DDR2 SDRAM SO-DIMM memory interface with 64-bit data width. The target
speed is 200 MHz DDR for a total theoretical bandwidth of nearly 25 Gb/s. Table 3.5 lists DDR2
SDRAM SO-DIMM pin-out as well as corresponding FPGA pin numbers.

Schematic Signal Name |Connector pin no. FPGA Pin Name
DDR2_A0 102 PIN_G11
DDR2_A1 101 PIN_D15
DDR2_A2 100 PIN_E10
DDR2_A3 99 PIN_H15
DDR2_A4 98 PIN_A10
DDR2_A5 97 PIN_J15
DDR2_A6 94 PIN_F8
DDR2_A7 92 PIN_D7
DDR2_A8 93 PIN_F14

DDR2_CLK_PO 30 PIN_DS8
DDR2_CLK_P1 164 PIN_J19
DDR2_CLK_NO 32 PIN_C8
DDR2_CLK_N1 166 PIN_H19
DDR2_A9 91 PIN_J13
DDR2_A10 105 PIN_F15
DDR2_A11 90 PIN_C7
DDR2_A12 89 PIN_B12
DDR2_A13 116 PIN_D24
DDR2_A14 86 PIN_A6
DDR2_A15 84 PIN_C6
DDR2_DQO 5 PIN_C10
DDR2_DQ1 7 PIN_E11
DDR2_DQ2 17 PIN_C11
DDR2_DQ3 19 PIN_H13
DDR2_DQ4 4 PIN_B7
DDR2_DQ5 6 PIN_B6
DDR2_DQ6 14 PIN_A7
DDR2_DQ7 16 PIN_D10

17

DDR2_DQ8 23 PIN_D13
DDR2_DQ9 25 PIN_C13
DDR2_DQ10 35 PIN_E14
DDR2_DQ11 37 PIN_C14
DDR2_DQ12 20 PIN_C12
DDR2_DQ13 22 PIN_A12
DDR2_DQ14 36 PIN_B11
DDR2_DQ15 38 PIN_A11
DDR2_DQ16 43 PIN_C17
DDR2_DQ17 45 PIN_B18
DDR2_DQ18 55 PIN_A19
DDR2_DQ19 57 PIN_D20
DDR2_DQ20 a4 PIN_C16
DDR2_DQ21 46 PIN_E17
DDR2_DQ22 56 PIN_C19
DDR2_DQ23 58 PIN_B19
DDR2_DQ24 61 PIN_C22
DDR2_DQ25 63 PIN_C21
DDR2_DQ26 73 PIN_A22
DDR2_DQ27 75 PIN_C24
DDR2_DQ28 62 PIN_E18
DDR2_DQ29 64 PIN_D21
DDR2_DQ30 74 PIN_B21
DDR2_DQ31 76 PIN_A21
DDR2_DQ32 123 PIN_A23
DDR2_DQ33 125 PIN_D22
DDR2_DQ34 135 PIN_E22
DDR2_DQ35 137 PIN_F21
DDR2_DQ36 124 PIN_B25
DDR2_DQ37 126 PIN_C25
DDR2_DQ38 134 PIN_A26
DDR2_DQ39 136 PIN_B26
DDR2_DQ40 141 PIN_AG17
DDR2_DQ41 143 PIN_AG18
DDR2_DQ42 151 PIN_AF15
DDR2_DQ43 153 PIN_AF16
DDR2_DQ44 140 PIN_AH17
DDR2_DQ45 142 PIN_AH18
DDR2_DQ46 152 PIN_AB16

Off-Chip Memory

18

Rasic

www. terasic.com

Rasic

www. terasic.com

DDR2_DQ47 154 PIN_AE17
DDR2_DQ48 157 PIN_AD17
DDR2_DQ49 159 PIN_AE19
DDR2_DQ50 173 PIN_AG22
DDR2_DQ51 175 PIN_AF24
DDR2_DQ52 158 PIN_AG21
DDR2_DQ53 160 PIN_AH21
DDR2_DQ54 174 PIN_AH22
DDR2_DQ55 176 PIN_AH23
DDR2_DQ56 179 PIN_AD18
DDR2_DQ57 181 PIN_AF20
DDR2_DQ58 189 PIN_AE21
DDR2_DQ59 191 PIN_AF22
DDR2_DQ60 180 PIN_AE24
DDR2_DQ61 182 PIN_AE25
DDR2_DQ62 192 PIN_AG26
DDR2_DQ63 194 PIN_AH25
DDR2_DQS0 13 PIN_E12
DDR2_DQS1 31 PIN_D12
DDR2_DQS2 51 PIN_B17
DDR2_DQS3 70 PIN_D17
DDR2_DQS4 131 PIN_A25
DDR2_DQS5 148 PIN_AF17
DDR2_DQS6 169 PIN_AE18
DDR2_DQS7 188 PIN_AF26
DDR2_DMO 10 PIN_A8
DDR2_DM1 26 PIN_B10
DDR2_DM2 52 PIN_E15
DDR2_DM3 67 PIN_C20
DDR2_DM4 130 PIN_B23
DDR2_DM5 147 PIN_AC15
DDR2_DM6 170 PIN_AH19
DDR2_DM7 185 PIN_AF25
DDR2_CS_NO 110 PIN_G18
DDR2_CS_N1 115 PIN_D25
DDR2_CKEO 79 PIN_H8
DDR2_CKE1 80 PIN_E8
DDR2_BAO 107 PIN_D16

19

DDR2_BA1 106 PIN_A17
DDR2_BA2 85 PIN_H12
DDR2_RAS_N 108 PIN_J16
DDR2_CAS_N 113 PIN_D19
DDR2_WE_N 109 PIN_H16
DDR2_ODTO 114 PIN_E21
DDR2_ODT1 119 PIN_C26
DDR2_SCL 197 PIN_J17
DDR2_SDA 195 PIN_C23

Table 3.5 Pin assignments of the DDR2 SO-DIMM

Off-Chip Memory

20

www.Cerasic.com

www.Cerasic.com

Chapter 4
Setup PCI Board

This chapter describes how to setup the PCI board and driver on users’ PC.

4.1 System Requirement

Windows, 32-bits

One 32 or 64 PCI slot

Quaruts Installed. Quartus 8.0 or 8.1 is recommended.
USB-Blaster and USB Cable

4.2 Hardware Installation: PCI Board

Follow these steps to install your PCI board into your computer:
1. Switch SW2 to select the 10 voltage level of HSTC on PCI board.

2. Make the connection between the daughter board and PCI board if your design needs it.

21

3. Switch off the computer and disconnect from the power socket.
Remove the cover of the PC.
5. Choose any open slot and insert PCI board.
* The Cyclone® 111 PCI development board has a Universal PCI Board edge connector.
It can be inserted into any of the PCI slots.

L T
N SN Ny)
D Universal PCl >~
_ Board Edge Connectorﬂf

D Eor mmj]/.]ﬂlw'
e

Insert the Universal PCI Board Edge
Conneclor in any of the following slots.

3.3V-32-Bit Connector

Insert bracket screw and ensure that the board sits firmly in the PCI socket.
Replace the cover of the PC.
Reconnect all power cables and switch the power on.

© © N o

The hardware installation is now complete.

4.3 Software Installation: PCI Kernel Driver

Before users can use Terasic’s PCI library to communicate the PCI board, PCI kernel mode driver
should be installed in users’ PC first.

The kernel driver is located in the “Install PCI Driver” folder of PClI CD-ROM. Please follow
below procedures to install the kernel driver:

10. Copy the folder “Install PCI Driver” to your hard-disk.

11. Double click “PCI_Driverlnstall.exe” to launch the installation program.

Software Installation: PCI Kernel 22
Driver asiC

www.Cerasic.com

Rasic

www. terasic.com

12. Click “Install” to start installing process.

[erasic - P Iriver Installer 1

Install

Exit

13. It takes several second to install the driver. When installation is completed, as information
dialog will popup.
14. Click “Exit” to close the installation program.

4.4 Install License File

To compile the project created by PCI system builder, users need to add a specified license to
Quartus. The license file is located in the “license” folder of the PCI CD-ROM.

4.5 Diagnoses

Below shows the procedure to perform the diagnosis:

Make sure PCI board is installed on your PC.

Make sure PCI driver is installed on your PC.

Make sure Quartus is installed on your PC.

Copy the “Diagnose” folder in PCI CD-ROM to your hard-disk.

Download PCI_TEST.sof to PCI board.

Double click “PCI_TEST.exe” to start diagnosis process.

The diagnosis will check DDR2 and LED. When diagnosis is completed, the result will display
on the console windows.

N ok~ bR

23

Chapter 5
PCI System Builder

This chapter describes how to quickly create a PCI project framework based on the software utility -
PCI System builder.

5.1 Introduction

PCI System Builder is a Windows-Based utility. It can help users quickly and accurately to create a
QUARTUS project. Figure 5.1 shows the graphical user interface of the utility.

Quartugs Top Design Built-in Logic:
Project Name: |Mv_PCI Bioard Yoltage: | 3.3V [Default) 3
User Logic — Peripheral
|v Enable LED PCI Bricge =
¥ Enable Button
|~ Enable GRIO —
" Enable EPCS
I Enable External FLL
DDR2 Socket _— |: CDR2 255 ME
! AR FIFO 1P
FIF & RP1
HSTC 2/3 Connector [J4.4)5] ——FFIFO W2
44— FFORP2
|HDMI daughter (HOMI T/R3) | BEh
FIFO RP3
HSTC 1 Connector [J3] F:FE)WPﬁ
| Disable M| Built-in Logic. . ‘ FIFC RP4
— E-FIFC AP
E-FIFC RP1
E-FIFC P2
E-FIFC RP2
ter m Terasic Technologies Generate

Figure 5.1 User interface of PCI System Builder

The utility consists of two major functions:
1. Quartus Top Design
2. Built-in Logic

For Quartus Top Design, the utility creates Quartus project and pin assignment according to users’
selected peripherals and daughter boards. For Built-in Logic, the utility generates verilog code
according to users’ configuration for PCI Bridge, DDR2 multi-ports, and custom registers. If PCI
Bridge is to be included, the driver and library for the PC side will also be created.

Introduction 24

www.Cerasic.com

www.Cerasic.com

5.2 Quartus Top Design

Figure 5.2 shows the user interface of Quartus Top Design. User can select desired peripherals and
daughter boards on the users interface.

Cluartuz Top Design

Project Name: [M_PCI Board Valtage: |33 [Defaul] |

|+ Enable LED

|+ Enable Button

| Enable GRIO

| Enable EPCS

| Enable External PLL

DDR2Z Socket
| Connect to DDR2 Sodimm [Use Altera IP] |

HSTC 2/3 Connector [J4/15]
|HOMI daughter [HDMI Tx/Rx)] |

HSTC 1 Connector [J3]
|Disable | Builtin Logic...

Figure 5.2 User Interface Quartus Top Design

In the Project Name field, users can input a desired name. It will be used as the name of Quartus
project, top-design file, and the folder to store the Quartus project. For Board Voltage pull-down list,
users can select the 10-Standard voltage of the HSTC connectors on PCI board. The voltage must

be consistent with the daughter boards attached to the PCI board. Please select 3.3V for Terasic
daughter boards. As shown in Figure 5.3, users must select the correct board voltage carefully, or

the hardware could be damaged.

25

Figure 5.3 Board \oltage Selections

For peripheral selections, users can directly check the desired peripherals. The associated
component will be highlighted with yellow rectangle. For daughter boards, users can select desired
daughter board from the associated pull-down list. The photo of selected daughter boards will be
displayed.

5.3 Built-in Logic

If users wish to include Built-in Logic in the Quartus project, click “Built-in Logic...” button and a
Logic Configuration dialog will pop up, as shown in Figure 5.4.
Note. All digitals in the dialog are interpreted as a hexadecimal value.

ogic Configuration EIE E
PCI Bridge DDRZ SDRAM
Connect to DDR2 SDRARM Size
[w FIFO wiite Port 1 [v FIFO Read Part 1 DDR2 Size: m Burst Length [hex]: IT

[~ FIFO Wwrite Part 2 I FIFO Read Port 2
[FIFO Wiite Port 3 I FIFO Read Port 3
[FIFO wiite Port 4 | FIFO Read Port 4

FIFO FORT

Part Width Start [hew] Length [hex)

v wie Part1 | _~| |DO000000 |00 00000
Cusztorm Flegizter
Read Port 1
e v ReadPort 1 | _~| |oooooooo oo dodod
REG_BUTTOM v “write Puort 2 |54Bits j |nnuunuun |EID1EIEIDDEI
Register Attribute: . -
egister "“'|3 |HBad[F'E-M°"$T” J‘ ¥ ResdPort2 [G4pis | (00000000 [ooiooood
Add Move Up Dl
[Wite Part3 | gapjts w| |00000000 |0O000O00
Feplace | ‘
| [~ ReadPot3 | g4pits «| |00000000 |0O0OOOO
Harne Rfaf
REG. LED W [Wite Part4 | g4pjts w| |00000000 |0O000O00

]S | Canicel ‘

Figure 5.4 Built-in Logic Configurations

For DDR2 SDRAM, users must select SDRAM Size and Burst length. The burst length must be
larger than or equal to 0x10. For FIFO port, the built-in logic can offer up to 4 FIFO-write ports and
4 FIFO-read ports. For each FIFO port, users need to specify its bus width (unit in bit), start address
(byte address), and FIFO length (unit in byte).

There are some constraints for the value of start address and FIFO length:
® The value of start address must be multiple of 32.
® The FIFO length must be multiple of 32 and larger than or equal to 32 x (burst length)

For ENHANCED Port, the built-in logic can offer 2 enhanced-write ports and 2 enhanced-read
ports at maximal. For each enhanced port, users need to specify its bus width, unit in byte. The

Built-in Logic 26

Rasic

www. terasic.com

Rasic

www.Cerasic.com

enhanced port size is as assumed as same as DDR2 SDRAM size.

If users wish to access the DDR2 from PC, they can tick the associated DDR2 ports in “Connect
DDR2 SDRAM?” group. For enhanced ports, only one enhanced-write port and one enhanced-read
port can be connected to PCI Bridge at the same time. Moreover, if a DDR2 port is connected, its
bus width will be fixed to be 64-bits.

If users wish to perform remote control from PC, custom registers can be added. The attribute of
each register is neither read-only nor write-only. The size of each register is fixed to 32-bits. To add
a register, users need to specify register name and attribute first and click “Add”; To delete an
existed register, users need to select the existed register and click “Del”’; To modify the name or
attribute of an existed register, users need to select the register first, then modify the name or
attribute, finally click “Replace”. Users can also change the register sequence by clicking “Move
Up” and “Move Down”.

5.4 Save Configuration

Once users finish the configuration for top-level design and built-in logic, they can save the
configuration into a file by selecting “File - Save Project As...”, as shown in Figure 5.5. Users can
reload the configuration afterwards by selecting “File - Open Project...”.

[ews Project. ..
Open Project. ..
Save Projeck As, ..
Exit

Figure 5.5 Configuration Save and Load

5.5 Generated Code

After user finish Quartus top design and built-in logic configuration, just click “Generate” to
generate desired codes. Some of the generated file are naming based on the project name. Assume
the project name is called as “MY_PCI”, the generated files will include:

® QUARTUS Project, contains:
B QUARTUS Project (MY_PCI.QPF)
B QUARTUS Top-Design File (MY_PCL.V)
B QUARTUS Pin Assignment File (MY_PCI.QSF)
B QUARTUS timing constrain file (MY_PCI.SDC)

27

B HTML Design Document (MY_PCIL.HTM)
B PCI System-Builder Configuration File (MY_PCI.PSC)

® User Logics, contains:
B PCI Bridge Logic: Top design file is PCI_Interface.v
B DDR2 Multi-Port Logic: Top design files is Multi_Port_Controller.v
B Custom Register logic: Top design files is User_Logic.v

® Windows Driver, contains:

B PCI Library and Header files:
TERASIC_APILdII
TERASIC_FPGA.dII
Wdapi921.dll
FPGA_BOARD.cpp
FPGA_BOARD.h
TERASIC_APLh
B System header file: pci_system.h
Control Panel Software Utility: PCI_ControlPanel.exe
B PCI Control Interface File (MY_PCI.PCI)

SN N NN

The generated Quartus Project and User Logic are located at the sub-directory under the folder
where the PCI system builder is executed. The sub-directory name is as same as the name specified
in the Project Name. The Windows Driver is located at the folder “PC_CODE” under the
sub-directory.

In the Quartus Project, users can add their logic in the verilog file User_Logic.v. All of desired
peripherals, daughter boards, and control pins are included in this module. The PCI System-Bulider
Configuration File (.PSC) contains the project configuration in PCI system builder. Users can select
the menu “file->open project...” in PCI system builder to open this file.

For Windows Driver, the kernel PCI driver is not includes in the “PC_CODE” folder. The kernel
PCI driver should be installed before calling the PCI library API. For detail installation, per refer to
the section Installation of PCI kernel driver in the next chapter.

The PCI Library includes TERASIC_API.DLL , TERASIC_FPGA.DLL, and WDAPI921.DLL.
Uses can call the exported API in the TERASIC_API.DLL to communicate with the PCI board. The
System Header File pci_system.h defined the address of custom registers defined in built-in logic.
Users’ application software can use these constants to specified desired custom register.
PCI_ControlPanle.exe is a software utility for users to remove control the PCI board. Before access
the PCI board, this utility inquires users to input the PCI Control Interface File (.PCI) that contain

Generated Code 28

Rasic

www.Cerasic.com

www.Cerasic.com

the control interface specified in the built-in logic configuration dialog.

29

Chapter 6
Host Software Library and Utility

The PCI Kits provide necessary PCI driver/library and PCI utility on host site, so users can easily
control the PCI board. Users must to install PCI kernel driver before PCI library and utility can
work well.

Note. The PCI driver only supports 32-bits MS Windows.

6.1 PCI Software Stack

Figure 6.1 shows the PCI software stack. To communicate with the PCI board, Users Application
should dynamically load the TERASIC_APL.dIl and call the exported API. Also, users need to
include TERASIC_APLI.h into their C/C++ project.

If users’ project is C++ project, they can refer to FFGA_BOARD.cpp and FFGA_BOARD.h
which implement the DYNAMIC DLL LOADING procedure. The implemented class name is
TFPGA_BOARD. FPGA_BOARD.h includes TERASIC_API.h, and pci_system.h.

The low-level PCI driver is called WinDriver which is developed by Jungle Company. It includes
wdapi921.dll and windrvr6.sys. In this kit, the PCI driver only supports 32-bits Windows. Also,
users are not allowed to call wdapi921.dll directly due to license limitation. For 64-bits Windows
and other OS platform, users need to develop the driver by their self or purchase development kits
from Jungle Company.

PCI Software Stack 30

Rasic

www.Cerasic.com

Rasic

www. terasic.com

USER MODE

Users Application
(Including
FPGA BOARD.cpp
FPGA_BOARD.h
FERASIC_APLh
pei_system.h)

TERASIC_APLDLL

Wdapio2 1.d1l

KERNEL MODE

windrvrfisys
windrved.inf
terasic_pei.inf

32-BITS
WINDOWS

Figure 6.1 PCI Software Stack

6.2 Data Structure in TERASIC_API.h

The data structure is shown below. APP_DDR2_PORT _ID enumerate the ID for DDR2 FIFO port.
The calling conversion is defined as “FAR PASCAL”. The handle of FPGA board is defined as a
pointer. The address of register is defined as 32-bits unsigned integer, the value of register is defined
as 32-bits unsigned integer, and id of DDR2 FIFO PORT is defined as 32-bits unsigned integer. The

interrupt service routine prototype is also defined.

typedef void *FPGA_BOARD,;

#define TERASIC_API FAR PASCAL

typedef DWORD FPGA_REG_ADDRESS;
typedef DWORD FPGA _DDR2_PORT_ID;
typedef DWORD FPGA _REG_TYPE;

typedef void (TERASIC_API *FPGA_ISR)(void);

6.3 API List of TERASIC_API.DLL
Below table shows the exported API of TERASIC_API.DLL

API Name API Description

System Function

SYS_BoardNum Return the number of FPGB available on your system.
SYS_GetDLLVersion Retrieve the version of the software kits

31

FPGA Control Function

FPGA_Connect

Connect to a specified FPAG board.

FPGA _Disconnect

Disconnect the connected FPAG bhoard.

Information

FPGA_IsReady

Check whether the FPGA is configured.

FPGA_GetFPGAVersion

Retrieve the version of build-in logic

FPGA_GetTickCount

Read the tick count, unit in ms, from FPGA counter logic.

FPGA Custom Register Access Function

FPGA_RegWrite

Write data to a specified register.

FPGA_RegRead

Read data from a specified register.

FPGA DDR2 FIFO Port Access Function

FPGA_FifotDmaWrite

Write a block of data to a memory port in DMA mode

FPGA_FifoDmaRead

Read a block of data from a memory port in DMA mode

FPGA_PortReset

Reset DDR2 port

FPGA_PortFlush

Flush DDR2 read port

Interrupt Function

FPGA_RegisterISR

Register interrupt callback function

Bridge

FPGA_GetBridgeVersion

Retrieve the version of the pci bridge hardware

FPGA_BridgeReset

Reset bridge circuit.

6.4 API Description of TERASIC DLL

This section will explain the PCI library API in details.

Function Prototype

Function Description

BOOL
TERASIC_API
SYS_BoardNum(
WORD wVendorID,
WORD wDevicelD,

);

WORD *pwBoardNum

Function:
Query the number of PCI boards installed on the
host.

Parameters:
wVendorID:
Specifies the vendor ID of the target PCI board.

wDevicelD:
Specifies the device ID of the target PCI board.

pwBoardNum:
Points to the buffer to retrieve the number of PCO
boards installed on the host.

Return Value:

API Description of
TERASIC_DLL

32

Rasic

www.Cerasic.com

Rasic

www.Cerasic.com

If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL

TERASIC_API
SYS_GetDLLVersion(
DWORD *pdwVersion

);

Function:
Query the software version of TERAISC_API.DLL.

Parameters:
pdwVersion:
Points to the buffer to retrieve the version
information.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL

TERASIC _API
FPGA_Connect(

FPGA BOARD *phFPGA,
WORD wVendorID,
WORD wDevicelD,
WORD wBoardIndex

);

Function:
Connect to a specified PCI board.

Parameters:

phFPGA:

Points to the buffer to retrieve the driver handle of
the target PCI board.

wVendorID:
Specifies the vendor ID of the target PCI board.

wDevicelD:
Specifies the device ID of the target PCI board.

wBoardIndex:
Specifies the board index of the target PCI board.
The index of first board is zero.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL

TERASIC_API
FPGA_Disconnect(
FPGA_BOARD hFPGA

);

Function:
Disconnect the specified PCI board.

Parameters:

hFPGA:

A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

Return Value:
If the function succeeds, the return value is true.

33

Otherwise, the return value is false.

BOOL

TERASIC_API

FPGA _IsReady (
FPGA_BOARD hFPGA,

);

Function:

Check whether the FPGA is configured. The FPGA
circuit framework is assumed to be generated by
the PCI system builder.

Parameters:

hFPGA:

A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

Return Value:
If the FPGA is configued, the return value is true.
Otherwise, the return value is false.

BOOL

TERASIC_API
FPGA_GetFPGAVersion(
FPGA_BOARD hFPGA,

Function:

Query the version of the PCI Framework RTL code
embedded in Clylone Il 3C125. The framework is
automatically generated by the PCI system builder

DWORD *pdwVersion utility.

);
Parameters:
hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.
pdwVersion:
Points to the buffer to retrieve the version
information.
Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL Function:

TERASIC _API Query the tick-count, unit in ms, of the PCI

FPGA_GetTickCount(
FPGA_BOARD hFPGA,
DWORD *pdwTickCount

);

Framework RTL code embedded in Clylone Il
3C125 The tick-count logic is automatically
generated by PCI system builder utility. When
FPGA is reconfigured, the counter is reset to zero.

Parameters:

hFPGA:

A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

API Description of
TERASIC_DLL

34

Rasic

www.Cerasic.com

Rasic

www.Cerasic.com

pdwTickCount:
Points to the buffer to retrieve the tick-count value.
The unit of the tick-count value is 1/1000 second.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL

TERASIC_API
FPGA_RegRead (
FPGA_BOARD hFPGA,
FPGA_REG_ADDRESS
RegAddr,
FPGA_REG_TYPE
*pRegValue

);

Function:
Read data from a specified register.

Parameters:

hFPGA:

A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

RegAddr:
Specifies the address of the target register. The
address is defined in pci_system.h.

pRegValue:
Points to the buffer to retrieve the data value of the
specified register.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL

TERASIC_API
FPGA_RegWrite (
FPGA_BOARD hFPGA,
FPGA_REG_ADDRESS
RegAddr,
FPGA_REG_TYPE
RegValue

);

Function:
Write data to a specified register.

Parameters:

hFPGA:

A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

RegAddr:
Specifies the address of the target register. The
address is defined in pci_system.h.

RegValue:
Specifies the data value written to the specified
register.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

35

BOOL

TERASIC_API
FPGA_FifoDmaRead(
FPGA_BOARD hFPGA,
FPGA_DDR2_PORT_ID
DDR2PortlID,

void *pBuffer,

DWORD dwBufSize

);

Function:
Read data from a specified DDR2 FIFO Port.

Parameters:

hFPGA:

A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

DDR2PortlID:
Specifies the DDR2 FIFO Port for reading. The
PORT ID is defined in pci_system.h.

pBuffer:
Points to the buffer to retrieve the data reading
from the specified DDR2 FIFO PORT.

DDR2PortlID:
Specifies the size, in bytes, of the buffer specified
by the pBuffer parameter.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL

TERASIC_API
FPGA_FifoDmaWrite(
FPGA BOARD hFPGA,
FPGA DDR2 PORT_ID
DDR2PortID,

void *pData,

DWORD dwDataSize

);

Function:
Write data to a specified DDR2 FIFO Port.

Parameters:

hFPGA:

A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

DDR2PortID:
Specifies the DDR2 FIFO Port for writting. The
PORT ID is defined in pci_system.h.

pData:
Points to the buffer containing tha data to be
written to the specified DDR2 FIFO PORT.

dwDataSize:
Specifies the number of bytes to write to the
specified DDR2 FIFO PORT.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL
TERASIC_API

Function:
Reset a specified DDR2 FIFO Port. When a fifo

API Description of
TERASIC_DLL

36

Rasic

www.Cerasic.com

Rasic

www.Cerasic.com

FPGA _PortReset(
FPGA_BOARD hFPGA,
FPGA_DDR2_PORT_ID
DDR2PortID

);

port is reset, the fifo pointer is reset to the
beginning of the fifo port.

Parameters:

hFPGA:

A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

DDR2PortlID:
Specifies the DDR2 FIFO Port for reseting. The
PORT ID is defined in pci_system.h.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL

TERASIC_API
FPGA_PortFlush(
FPGA_BOARD hFPGA,
FPGA_DDR2_PORT_ID

Function:

Flush a specified DDR2 FIFO Port. When a fifo
port is flushed, the data in fifo are written to DDR2
immediately.

DDR2PortID Parameters:

); hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.
DDR2PortID:
Specifies the DDR2 FIFO Port for reseting. The
PORT ID is defined in pci_system.h.
Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL Function:

TERASIC_API Register/Unregister an interrupt service routine for

FPGA_RegisterISR(
FPGA_BOARD hFPGA,
FPGA_ISR ISR_Function

);

the PCl interrupt event.

Parameters:

hFPGA:

A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

ISR_Funciton:

Specifies the location of interrupt service routine. If
the value is NULL, the unregister interrupt service
routine.

37

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL

TERASIC_API
FPGA_GetBridgeVersion(
FPGA_BOARD hFPGA,

Function:
Query the version of PCl Bridge RTL code
embedded in Clylone Il 3C25.

DWORD *pdwVersion Parameters:

); hFPGA:
A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.
pdwVersion:
Points to the buffer to retrieve the version
information.
Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

BOOL Function:

TERASIC_API Reset bridge circuit located at Cyclone IIl 3C25.

FPGA_BridgeReset (
FPGA_BOARD hFPGA

);

Parameters:

hFPGA:

A handle to specify the target PCI board. The
handle is returned by calling FPAG_Connect API.

Return Value:
If the function succeeds, the return value is true.
Otherwise, the return value is false.

6.5 PCI Control Panel Utility

Except for calling PCI Library, users also can use the PCI Control Panel Utility to communicate
with the PCI board. The execution file name of this utility is named as, PCI_ControlPanel.exe. It is
automatically generated by PCI System builder. It is located in the “PCI_CODE” folder. Figure 6.2

shows the user interface of the PCI control panel utility.

PCI Control Panel Utility 38

Rasic

www.Cerasic.com

Rasic

www. terasic.com

Teraisc - PCI Control Panel ¥1.0.0 |
—PCl Bridge —Werzion |nformatio
DLL Yergion2.0.0.0
R ezet | Bridge Yersion:1.0.0.2
FPGA Yerzion:1.0.0.0
—Tizk Count —DDR2 SDRAM
Fiead | DORZ Port Type
ms [decimal] |FIFD wP1(en=32768) =]
I wirite [File = SDRAM)]
Register Fiead (SDRAM > File)
Register Mameattnibute
| CMD_REGAw(256) . Eyte Length{Hex]

|nunnnunn

Head |
Hex [~ File Length

Write | Port Reszet
Hex

|nnnnnnnn Pait Flush

Connected, maonitaring interupt

Select PCI Control Interface File

Figure 6.2 User Interface of PCI Control Panel

Before launch this utility, users need to install the PCI board and driver first, then download .SOF to
the PCI Board. After launch this utility, a “Connected, monitoring interrupt” message will appears if
it connects the PCI board successfully. In additional, the version information also is displayed in the
version information group. Then, users need to select “PCI Control Interface File” first. This file is
automatically generated by the PCI System Builder. It is located at the “PC_CODE” folder and its
extension name is “.PCI”. Users can click “Select PCI Control Interface File” button to select

the .PCl file.

If users implement interrupt in user logic, users can use this utility to verify. When hardware
interrupt happen, a message dialog will popup to inform users that interrupt occurs.

If users implement register access in user logic, users also can use this utility to verify. First, users
need to select the desired register in the pull down menu Register Name/Attribute. Then, click

“Read” and “Write” button to access the register.

If users enable the DDR2 FIFO, users can use this utility to verify, too. First, users need to select the

39

desired DDR2 FIFO PORT in the pull down menu DDR2 Port Type. Then, click “Read” and
“Write” button to access the data of DDR2 FIFO. In “Read” function, the data from fifo port will be
written to a specified file. In “Write” function, the file content will be written to fifo port with a
given length, unit in bytes. In additional, click “Port Reset” and “Port Flush” to reset and flush the
DDR2 FIFO, individually.

The PCI System Builder automatically generated a tick-count circuit. To test this function, users can
click “Read” in the Tick Count Group.

PCI Control Panel Utility 40

Rasic

www. terasic.com

Rasic

www. terasic.com

Chapter 7
Reference Design

This chapter illustrates some example showing how to develop Quartus project based on PCI
system builder. All of these reference designs are developed by Quartus 8.1.

7.1 Remote Control LED

B Function Description
This design shows how to implement remote control the LED in the PCI board. In host site,
application call register access API to control the LED on the PCI board.

B Build Project by PCI System Builder
Below shows the procedure to create the project framework by using PCI System builder utility.

1. Launch PCI_SystemBuilder.exe and specify project name and enable LED.

Cuartuzs Top Design

Project Mame: | |PCI_LED Board Yaltage: | 3.3 [Default] j

v Enable LED

[Enable Button it R R T T T e
i _LLith r -i,;l m ._., E
- T

[Enable GRIO
| Enable EFCS
| Enable External PLL

DDRZ Socket

| Disable |

HSTC 243 Connectaor [J4415]

| Disable |

HSTC 1 Connectaor [J3]

| Disable j Euilt-in Logic...

2. Click “Built-in Logic...” and Logic Configuration Dialog will pop up. Add “REG_LED”
register with WRITE attribute and click “OK”

41

i Logic Configuration

~PC| Bridge ~DDR2 SDRAM
[~ FIFD *rite Part 1 [~ FIFD Read Part 1 DDR2 Size: |25|3M vl Burst Length [hex]: |2U
[~ FIFD “#frite Part 3 [~ FIFO Read Port 3
! Part Width Start [hex] Length [hex)
FIFO vwrite Part 4 FIFO Read Part 4 .
r r I~ whitePot1 [gegis »| [00000000 [oo000000
Rieqister Name [” FeadPort1 | g4pits ~| [0O00O00O0 00000000
QHEG_LED} [~ ‘wirite Part 2 | B4 Bits v | |uuunnnuu |nuuunnnu
Fieqizter Attrihute.qwnte [PC: Master)) -
M I" ReadPot2 |g4pits | [000000D0 0000000
Move Up Del |
[” Wiite Port 3| g4pits »| |00000000 |0000000
Replace | e Diown |
[ReadPot3 | g4pits »| |00000000 |DO0OOD00
MHame B A
[” Wiite Port 4 | g4pits »| |00000000 |0000O000
[~ ReadPart 4 | B4Bits v | |uuuunnnu |nuuunnnn
| Cancel |

3. Click “Generate” to generate codes.

B Add User Logic in Quartus Project

Below show the procedures to add user logic in the generated Quartus Project.
1. The generate codes are shown as below. Open the generated Quartus project by double

clicking “PCI_LED.gpf”.

ICHPC_CODE

E] Local_Interface.wv
E] PCI_Interface,y
&|PCI_LED htm

=l PCI_LED . qsf
PCI_LED. sdc

| PCI_LED. v

E] ser_Logic.w
PCI_LED.psc

2. Open User_Logic.v and add “assign LED = iREG_LED;” statement.

40 ffmmmrr e ———————
41 A4 Add wour design here.

4z ffmmmrr e ———————
43

44 asgsign LED = 1REG LED:

45

46 endmodule

47

3. Compile the project and download the generated file PCI_LED.sof to the PCI board.

Remote Control LED

42

www.Cerasic.com

www.Cerasic.com

B Remote Control by PCI_ControlPanel.exe
Below show the procedures to remote control the LED by PCI_ControlPanel.exe.
1. Launch PCI_ControlPanel.exe under the PC_CODE folder

FPGA_BOARD. cpp

I Frca BOARD.N

FP.,T_'- PCI_ControlPanel. exe
PCI_LED.pei
pei_syskem.h

| %] TERASIC_ART.dI
TERASIC_AFLh

%] TERASIC_FPaA.dl

&) wdapigz 1, di

2. Click “Select Configure File” to select PCI_LED.pci

—PCl Bridge Werzion [nfarmatio
DLL Wersion:2.0.0.0
Fezet | Bridge Werzion:1.0.0.2
FPGA Yersion:1.0.0.0
Tick Count —DDRZ SDRAM
Fiead | DDRZ FPort Type
mz [decimal) I Dizabled j

—Register

pfrite [File - SORAR) |

Head [SLREAM > Eile] |

Feqister Mame/dttribute

REG_LED AW(25E] =l Byte LengthiHex)

|nnnnnunn
Fead |
Hex [Filz Length
Fort Beset |
Hex
(Jooooooo ot Fhish |

Conkected, monitaring intermpt

Select PCI Control Interface File

3. Type “0000000F” in the write edit box of the Register group. Click “Write” and the LED
will be turned off immediately.

43

2.

Teraisc - PCI Control Panel ¥1.0.0

rTick Count

Fiead |

Werzion Informatio

DLL Wersion:1.2.1.0

mz [decimal) Bridge Yerzion:1.0.0.2
I FPGA Yersion:1.0.0.0
—Reaqister ~DDRZ SDRAM
ﬂagu.ter.&ame&tt{i:ute DDR2 Port Type
{ IHEG LED/w(25E]) 7| | Disabled |
Fead | e wirite (File -» SOHAR] |
| Flead (SDRAM > Filg] |
Byte Length[Hex)
|nuununun
| e I~ File Length
000000F el |
Fart Flush |

Connected, monitoring interupt

Select PCI Control Interface File

Remote Control by Your C++ Program
Below show the procedures to remote control the LED by creating a C++ program.
1.

Create a C++ project.
Copy FPGA _BOARD.cpp, FPGA_BOARD.h, TERASIC_API.h, and pci_system.h under
the PC_CODE folder to the source code folder of your C++ project.
Copy TERASIC_API.DLL and wdapi921.dll under the PC_CODE folder to the execution
file folder of your C++ project.
Include FPGA_BOARD.cpp into your C++ project.

Modify your main pr

ocedure as:

int main(int argc,

{

printf("=====

if (!Board.IsD

#include "FPGA_BOARD.h"

char* argvl])

TFPGA_BOARD Board;
FPGA_REG_TYPE RegValue =0x00;
BOOL bSuccess = TRUE;

riverAvailable()){

/I check whether the PCI driver is available

printf("Failed to load the PCI driver.\n");
getchar();
return O;

Remote Control LED

44

www.Cerasic.com

Rasic

www.Cerasic.com

/I connect the PCI board

if (\Board.Connect()){
printf("Failed to connect the PCI board.\n");
getchar();
return O;

}

/I make sure FPGA is configured

if ('\Board.IsReady())}{
printf("FPGA is not configured. Please make sure .sof is downloaded.\n");
getchar();
return O;

}

/l start to control the LED
printf("LED blinking...\n");
while(bSuccess){
bSuccess = Board.RegWrite(REGW_REG_LED, RegValue);
if ('bSuccess){
printf("Failed to set register.\n");

lelsef
RegValue "= 0xO0F;
Sleep(500);

}

}

1

printf("Program is terminated.\n");
Board.Disconnect();

getchar();

return O;

6. Compile and execute the code. (Note. If an error “fatal error C1010: unexpected end of
file while looking for precompiled header directive” occurs while compiling, please
disable the Precompiled Headers function in the VC++ project.)

7. Now, you are expected to see the LED on the PCI board is blinking.

Note. For first time to use the PCI board on your compiler, you should install the PCI kernel

driver first.

Source Code:

The Quartus Project:
€ Source code : PCI DC-ROM\reference_design\PCI_LED
€ Development Tool: Quartus 8.1

The C++ Project:

€ Source code : PCI DC-ROM\reference_design\PCI_LED\PC_CODE\vb_led
€ Development Tools: Visual C++ 6.0

45

7.2 Button IRQ

B Function Description

This design shows show how to implement an interrupt function. In the design, the interrupt is
triggered by the BUTTON on the PCI board. In host site, the application should register an interrupt
service routine first. When interrupt happen (users press button on the PCI board), the service
routine is called. Then, the application reads the button status and shows the status on host’s console
window.

The following figure is the block diagram of Button IRQ reference design. Before detecting the
button press, the input signals need to be processed by de-bounce circuit. Once the button is pressed,
the interrupt request signal will active one clock cycle to trigger PCI interrupt, and the button status
register will record it(which button had been pressed).

A

A A
Button Status
Button Input Falhng Repart button Status (-%
2 Circuit B cinerrupt Request 1 B
B ton nterrupt Reques R gj
w
\

B Build Project by PCI System Builder
Below shows the procedure to create the project framework by using PCI System builder utility.
1. Launch PCI_SystemBuilder.exe and specify project name and enable BUTTON.

Button IRQ 46

Rasic

www. terasic.com

www.Cerasic.com

Cuartuzs Top Design

Project Mame: |PCI_EUTTOM_IRG Board Voltage: |3.3*J[Default] j
| Enable LED
v Enable Buttan . - R T

| Enable GFIO

| Enable EPCS

| Enable Extenal PLL

DDR2 Socket

|Disable e
HSTC 2/3 Connector [J4/15]

| Disable -]

H5TC 1 Connector [J3]
|Disable | Built-in Logic...

2. Click “Built-in Logic...” and Logic Configuration Dialog will pop up. Add “REG_LED”
register with WRITE attribute and click “OK”

PCI Bridge DDRZ SORAM
Connect to DDR2 SDRAM Size
[~ FIFO write Part 1 [~ FIFO Read Port 1 DDRZ Size: | 256M LJ Burst Length [hex]: |2EI
[FIFD */rite Port 2 [~ FIFO Read Port 2 =
FIFO PORT
I FIFO “wite Port 3 | FIFO Read Port 3
= FIFD Wiite Port 4 ™ FIFD Read Port 4 g, cotitien, usodiiher)

Wiite Part 1| gagits »| | 00000000 00000000
Custom Register

' Read Part 1 s . |2
Register Name eadPot1 [g4Bis ~| 00000000 0000000

" whitePod | g4 Bis 00000000 [00000000

[BUTTON_STATUS [Wi Pot2 | gagis | |00000000 00000000
Flegmter.f-\ttr|bute:|F|ead[F'C:h-1aster] _TJ ™ Read Port 2 |E4 Bits LJ |EIDDEIEIEIDD {DDEIEIEIEIDD
Add | i] Del ‘
[whitePot3 | gagis w| 00000000 (00000000
Feplace | : f I
[ReadPat3 | g4pits | 00000000 00000000
M ame R
=~
R

[ReadPot4 | g4 Bits 00000000 {00000000

Ok I Cancel I

3. Click “Generate” to generate codes.

47

B Add User Logic in Quartus Project
Open the generated Quartus project by double clicking “PClI_BUTTON_IRQ.qpf".
Copy User_Logic.v to your current project folder from PCI_BUTTON_IRQ folder of
example project in the CD-ROM.
3. Compile the project and download the generated file PCI_BUTTON_IRQ.sof

B Implement Users’ C++ Program
Below show the procedures to implement C++ program for interrupt handling
1. Create a C++ project.
2. Copy FPGA_BOARD.cpp, FPGA BOARD.h and TERASIC_API.h, and pci_system.h
under the PC_CODE folder to the source code folder of your C++ project.
3. Copy TERASIC_API.DLL and wdapi921.dll under the PC_CODE folder to the execution
file folder of your C++ project.
Include FPGA_BOARD.cpp into your C++ project.
5. Modify your main procedure as:

#include “FPGA_BOARD.h”

static BOOL bCheckButton = FALSE;
void TERASIC_API BUTTON_ISR(void){

}

int main(int argc, char* argv[])

{

bCheckButton = TRUE;

TFPGA_BOARD Board;
FPGA_REG_TYPE RegValue;
BOOL bSuccess = TRUE;

printf("===== Button IRQ Demo =====\n");

/I check whether the PCI driver is available

if ('Board.IsDriverAvailable()){
printf("Failed to load the PCI driver.\n");
getchar();
return O;

}

/l connect the PCIl board

if (IBoard.Connect()){
printf("Failed to connect the PCl board.\n");
getchar();
return O;

}

/I make sure FPGA is configured

if 'Board.IsReady(){
printf("FPGA is not configured. Please make sure .sof is downloaded.\n");
getchar();
return O;

Button IRQ

48

Rasic

www.Cerasic.com

Rasic

www. terasic.com

/[register interrupt service routine

if ('Board.RegisterISR(BUTTON_ISR)){
printf("Failed to register interrupt service routine.\n");
getchar();
return O;

}

/l start to control the LED
printf("Button monitoring...\n");

while(bSuccess){
if (bCheckButton){
bCheckButton = FALSE;
bSuccess = Board.RegRead(REGR_BUTTON_STATUS, &RegValue);
if !bSuccess){
printf("failed to read button's status.\n");
lelsef
/I change to high active
RegValue "= 0x03;
1
if (RegValue & 0x03) == 0x03)
printf("BUTTON 0 and 1 are pressed.\n");
else if (RegValue & 0x01)
printf("BUTTON 0 is pressed.\n");
else if (RegValue & 0x02)
printf("BUTTON 1 is pressed.\n");
Y it
Y if
} I/ while

I

printf("Pogram is terminated.\n");
getchar();

return O;

6. Compile and execute the code. (Note. If an error “fatal error C1010: unexpected end of
file while looking for precompiled header directive” occurs while compiling, please
disable the Precompiled Headers function in the VC++ project.)

7. Now, click the button on PCI board. The relative information will be displayed in the
console window.

Note. For first time to use the PCI board on your compiler, you should install the PCI kernel
driver first.

49

B Source Code:

The Quartus Project:
€ Source code : \reference_design\PCI_BUTTON_IRQ
€ Development Tool: Quartus 8.1

The C++ Project:
€ Source code : \reference_design\PClI_BUTTON_IRQ\PC_CODE\vb_button_irq
€ Development Tools: Visual C++ 6.0

7.3 DDR2 Access

B Function Description

This section illustrates an example of how to access DDR2 from PC site and FPGA local site. This
reference design provides a sample interface that connects PCI Bus to internal RAM through
Multi-Port Memory Controller (MPMC). The following figure is the high level block diagram of
the reference design. The Read DATA Interface and Write DATA Interface receive the command
individually from host PC and execute them; The Read DATA Interface controls read port of
MPMC and write the data to on-chip memory. Write DATA Interface reads the data from on-chip
memory and writes the data into write port of MPMC.

User_Logic.v
Write DATA E

64-Bit Interface !
(WR_TO_DDR) | |

> |

+ :

Z :

Read DATA N N
Interface ﬂl/ On-Chip |
(WR_TO_RAM) RAM :
32k Bytes |

v" Write port 1 and read port 2 are the same starting address and depth.
v Write port 2 and read port 1 are the same starting address and depth.

DDR2 Access 50

www.Cerasic.com

Rasic

www. terasic.com

B Build Project by PCI System Builder
The procedures are listed below:
8. Launch PCI_SystemBuilder.exe, then specify project name and select “Connect to DDR2
SO-DIMM (Use Altera IP).

Cuartuzs Top Design

Project Mame: |PCI_DDRZ Eoard Yoltage: |3.3 Y [Default) j
| Enable LED
v Enable Button TN i o i

[Enable GRIO
| Enable EFCS
| Enable External PLL

COR2 Socket
| Connect to DDR2 Sodimm [Use Altera IP] |

HSTC 2/3 Connector [J4/15]

| Disable -
H5TC 1 Connector [J3]
|Disable - Built-in Logic...

9. Click “Built-in Logic...” and Logic Configuration Dialog will pop up. Add “CMD_REG”
register with WRITE attribute and “STATUS_REG?” register with READ attributes.
Enable FIFO port Write Port 1, Read Port 1, Write Port 2, and Read Port 2. Specify the
Start and Length of each fifo port as below. Finally, click “OK”

51

FCI Bridge

Connect to DDR2 SDRAM

lv FIFO Read Paort 1
[~ FIFO Read Port 2
[~ FIFO Read Port 3
[~ FIFO Read Port 4

[FIFO “rite Port 2
[FIFO ‘wite Port 3
[FIFO ‘wirite Port 4

Cuztom Reagister

Register Mame

CMO_REG
Register Attribute: |W’rite [PLC: Master] j
aod | | Dol |
Replace ‘ Move Down |
Mame R

STATUS_REG R

DDR2 SDRAM
Size
DDR2Size: [286M v Burstlengthfhes) 20
FIFO PORT
Pt Wwidth Start (hew] Length [hex)
W wiite Port1 | ~| 00000000 | 00005000
W ReadPort1 | -| |0O00B000 |0000S000

W witePort2 | g4pits w| (00008000 |0000S000

W ReadPot2 | apjs | (00000000 |O000S000

[wiitePot3 | g4piis w| (00000000 |00000000

[~ ReadPot3 |g4pits «| |00000000 |00000000

[wite Port4 | g4pits w| (00000000 | 00000000

[~ ReadPot4 |g4piis ~| (00000000 |O00000000

0k, | Cancel |

10. Click “Generate” to generate codes.

B Implement Users’ C++ Program

Below show the procedures to implement C++ program for interrupt handling

1. Create a C++ project.

2. Copy FPGA_BOARD.cpp, FPGA BOARD.h and TERASIC_API.h, and pci_system.h
under the PC_CODE folder to the source code folder of your C++ project.

3. Copy TERASIC_API.DLL, TERASIC FPGA.DLL, and wdapi921.dll under the
PC_CODE folder to the execution file folder of your C++ project.
Include FPGA_BOARD.cpp into your C++ project.

5. Modify your main procedure as:

#include “FPGA_BOARD.h”

int main(int argc, char* argv[])
{
const int nTestSize = 32*1024;
inti;
BYTE *pWrite, *pRead;
DWORD dwValue;
TFPGA_BOARD Board;

/I 32K-bytes

printf("===== DDR2 FIFO Write/Read Test =====\n");

DDR2 Access

52

www.Cerasic.com

Rasic

www. terasic.com

if ('\Board.IsDriverAvailable()){
printf("Failed to load the PCI driver.\n");
getchar();
return O;

if (\Board.Connect()){
printf("Failed to connect the PCI board.\n");
getchar();
return O;

}

/I reset fifo port
Board.PortReset(APP_DDR2_FIFO_WP1);
Board.PortReset(APP_DDR2_FIFO_RP1);

pWrite = (BYTE *)::GlobalAlloc(GPTR, nTestSize);
pRead = (BYTE *)::GlobalAlloc(GPTR, nTestSize);
for(i=0;i<nTestSize;i++){

*(pWrite+i) = i;
}

[write data to fifo port

printf("PC --> DDR2 FIFO WP1\n");
Board.FifoDmaWrite(APP_DDR2_FIFO_WP1, pWrite, nTestSize);
Board.PortFlush(APP_DDR2_FIFO_WP1);

I/l copy fifo data to local memroy

printf("DDR2 FIFO RP2 --> Local Memory\n");

Board.RegWrite(REGW_CMD_REG, 0x01); // send trigger message

Board.RegWrite(REGW_CMD_REG, 0x00);

dwValue = 0;

while((dwValue & 0x01) == 0){ // wait task done
Board.RegRead(REGR_STATUS_ REG, &dwValue);

}

I/l copy fifo data to local memroy

printf("DDR2 FIFO WP2 <-- Local Memory\n");

Board.RegWrite(REGW_CMD_REG, 0x02); // send trigger message

Board.RegWrite(REGW_CMD_REG, 0x00);

dwValue = 0;

while((dwValue & 0x02) == 0){ // wait taks done
Board.RegRead(REGR_STATUS_ REG, &dwValue);

}

/I read data from fifo port

printf("PC <-- DDR2 FIFO RP1\n"):
Board.PortReset(APP_DDR2_FIFO_RP1);
Board.FifoDmaRead(APP_DDR2_FIFO_RP1, pRead, nTestSize);

/[compare
bool bSame = true;
for(i=0;i<nTestSize && bSame;i++){
if (*(pWrite+i) = *(pRead+i)){
bSame =false;
printf("Test NG, pWrite[%d]=%d, pRead[%d] = %d\n",
i, *(pWrite+i), i, *(pRead+i));

53

}
if (bSame)
printf("Test PASS\n");

I
getchar();

I
::GlobalFree(pWrite);
::GlobalFree(pRead);

return O;

6. Compile and execute the code. (Note. If an error “fatal error C1010: unexpected end of
file while looking for precompiled header directive” occurs while compiling, please
disable the Precompiled Headers function in the VC++ project.)

7. The test result will be displayed on the console window, as shown figure below.

" Documents and Settings'UserDesktop'PC_CODE\vc_ddrZ.exe [I[=]

FC —> DDR2 FIFO WFP1

DDRZ FIFO RPF2Z2 —» Local Memorwy
DDRZ2 FIFO WP2 <— Local Memorwy
FC <— DDRZ FIF0O RF1

Tezt PASS

Note. For first time to use the PCI board on your compiler, you should install the PCI kernel
driver first.

B Source Code:

The Quartus Project:
€ Source code : \reference_design\PClI_DDR2
€ Development Tool: Quartus 8.1

The C++ Project:
€ Source code : \reference_design\PClI_DDR2\PC_CODE\vbh_ddr2
€ Development Tools: Visual C++ 6.0

DDR2 Access 54

Rasic

www.Cerasic.com

www.Cerasic.com

Chapter 8
Multi-Port Memory Controller

The Terasic Multi-Port Memory Controller provides a simple and high-performance solution to
interface with external memory device. This controller supports up to 12 local ports which have two
kinds of interface, one is simple port and another is enhanced port. The starting address and port
depth can be only modified right away on enhanced port. Figure 8.1 gives the high-level block
diagram of Terasic Multi-Port Memory Controller.

i W
. Read Port 1
Userlogic K m -«

Read Port 4
User Logic [E —
. Write Port 1
User Logic * —
; Multi-port
H System
- Write Port 4 Interconnect
User Logic 3 FIFO

Random Access Port 1 Lm_’

. Random Access Port 4
Userlogic ¥ FIFO R

Figure 8.1 High level block diagram of the Multi-Port Memory Controller

8.1 Principle of Read/Write Port

This section will introduce how read/write port accesses the memory, and cautions users need to be
aware of.

8.1.1 Write Port

When users start writing data to the write port, 64 words (default setting) of data will be written to
the physical memory at once only if the internal buffer of the write port reaches 64 words. In
another words, the write port will stop writing any data to the physical memory if the data remained
in the buffer is less than 64 words. Hence a flush command is required to write the data remained in
the internal buffer of the write port to the physical memory, unless the rest is not important. Figure
8.2 shows initial workflow of the write port.

55

System Power On
or Memory Controller
Reset

Memory Controller
Initial
(about 6.5ms)

The signal
Ready_to o Write Port Ready
Write :
is asserted

Figure 8.2 Initial workflow of the write port

8.1.2 Read Port

When the memaory controller is ready to operate, the read port will start accessing 64 words (default
setting) of data immediately from the physical memory to the internal buffer of its own. The signal
port ready will be driven by the read port, which indicates users can start reading the data. However,
such process will be triggered whenever the memory controller is initialized and the read port is not
in the reset state. Hence undesired data will be captured to the internal buffer of the read port at the
time.

To prevent the situation from happening, users must reset the read port to make sure data retrieved
is valid. When the read port is reset, the current address will also be reset to pre-defined starting
address of the read port, instead of the beginning address of current internal buffer. The initial
workflow of the read port is shown in figure 8.3. If the read port is not in reset state, it will read the
data into the buffer immediately from physical memory after memory controller completes initial
stage. This may cause that undesired data will be get to the internal buffer of the port, because the
data of physical memory have not been written.

There are two methods that we recommend to solve this problem:
1. Keep the read port reset signal low until start reading data.
2. Totrigger the reset of read port before the first time to read data.

Read Port 56

Rasic

www.Cerasic.com

Rasic

www. terasic.com

System Power On
or Memory Controller
Reset

Memory Controller
Initial
(about 6.5ms)

Read Port
in reset state ?

Read 64 words to
buffer from
the pre-defined
starting address of
physical memory

The signal
Ready to be Read Port Ready
Read :
is asserted

Figure 8.3 Initial workflow of the read port

8.2 Port Interface

One physical memory device could be replaced several memory blocks by using Terasic Multi-Port
Memory Controller. Each memory block may have its own write and read port. These ports are
similar to synchronous FIFO and must define the starting address and depth to configure a memory
block that works on sequential mode. Figure 8.4 shows the memory arrangements.

57

[J Port 1 Starting address

+Memory
Port1))
ol)

Memory depth ——ee, 0 0 0 0 A A A O 0 A

Port 2
Memory depth .~ aaaaaaaaaaaaaaaaaaﬁ’ ililililililiiililililililililil
Port 2 Starting address

Figure 8.4 Memory arrangements

8.2.1 Simple Write Port

Figure 8.5 shows the writing waveform of simple write port. Each port has its own clock domain. It
synchronizes data write transactions to FIFO of the port. When the number of data in the FIFO
reaches a certain value, the write port will start writing the data from FIFO to the external memory
which location is related to the writing address pointer. Figure 8.6 shows how to force a flush of the
write port by asserting iIFLUSH_REQ. During clock cycle 5, the signal oFLUSH_BSY is asserted to
inform the local side that it is flushing the data which remain in the FIFO. When oFULL or
oFLUSH_BSY is asserted or o0 WRITE_PORT_READY is inactive, the circuits of IWRITE are

disabled.

iCLK |

iRST_n !

iWRITES I / I I \ I /

iWRITE_DATA!:< X 0 X o1 X D4 D2: X D3: X D4:

iFLUSH_REQ |

OFLUSH_BSY !

OFULL

Figure 8.5 Write waveform of the simple write port

Simple Write Port 58

www.Cerasic.com

Rasic

www. terasic.com

U LE CE PE CE | | | |

iRST_nf 3 ‘ ' : : : SS 3 ;

iWRITE ! ; $ % 1 % | %
iWRITE_DATA (>< : >< | | X | >
IFLUSH_REQ | /—\ SS
OFLUSH_BSY / Ss \

oFULL SS

) At least 2 clock cycle | | | - At least 2 clock cycle

Figure 8.6 Flush waveform of the simple write port

8.2.2 Simple Read Port

Figure 8.7 shows read transactions of simple read port. The read signal operates as a
read-acknowledge signal. Thus, the data bus outputs the first data word regardless of whether a read
operation occurs. Figure 8.8 shows the port reset. When a reset operation occurs, the starting
address of the port will be reloaded and oPORT_READY signal will be de-asserted to indicate that
it is not enough data word to be read. While oPORT_READY is asserted, data of the read port can
be read.

iRST_n':

OPORT_READY ! : ! ; ; ; ; ;
iREAD T N/ : : T
OREAD_DATA > o0 X X 1 X b2 X m3 X >

OEMPTY |

Figure 8.7 Read transfer of simple read port

59

! ? ? §
oPORT_READY \ §§ /
OREAD_DATA (' ' ' §< ' ' ' ' ' >

OEMPTY | i i ; SS

Figure 8.8 Reset Operation of simple read port

8.2.3 Enhanced port

Figure 8.9 shows write transfer of enhanced write port. The differences between the enhanced and
simple port are that starting address and port depth of the enhanced port could be modified
immediately. Figure 8.10 shows how to reload the starting address and port depth of the enhanced
port. When the signal iRST_n is asserted, the data in the FIFO will be clear. Furthermore, the
starting address and port depth signals will be reloaded into the registers of this port. Figure 8.11
shows the parameters reloading waveform of enhanced read port.

iCLK |

iRST_n!

iSTARTING_ : ; ; ; ; ; ; ’ ’
ADDRESS ~ <K >

rorszEe I
iWRITEE / \ / \
iWRITE_DATA§< I > Dol X Dll X I et Dzl X D3I X D4I X I >

iFLUSH_REQ !

OFLUSH_BSY:

oFULL :

Figure 8.9 Write transfer of enhanced write port

Enhanced port 60
P Imaslc

www. terasic.com

www.Cerasic.com

iCLK |

iRSTn T 1 N/

iSTARTING._ | ; I ; -
ADDRESS D} ADDRESS X :

iPORT_SIZE;(' X DEPTH X

N
~

iWRITE |

iWRITE_DATA§< X DOi X Dli X >

iFLUSH_REQ :

oFLUSH_BSY!

OFULL !

" Atleast 2 clock cycle

Figure 8.10 Parameter reloading of enhanced write port

5 6 7 8 9

iCLK |

iISTARTING_ ; : : :
ADDRESS | D<ADDRESS X %

iPORT_SIZEE(N oErth X ><
OPORT_READY | \ §§ /
o

OREAD_DATA (. . . §< >

OEMPTY §§

Figure 8.11 Parameter reloading of enhanced read port

61

Chapter 9
PCI Local Interface

This section describes how to directly communicate with PCI Bus and trigger a PCI interrupt.

9.1 PCI Local Write/Read Interface

The PCI local interface could be distributed several read and write local interface by PCI System
Builder, and . The write interface is familiar memory-like write interface which supports
wait-state insertion. The read interface has a burst count signal that is used to indicate the number of
transfers in each read, and read interface is not support wait-state. Figure 9.1 shows a 64-bit write
transfer waveform of PCI local interface. The wait-state of each write transfer do not exceed 16
clock cycles because the time of wait-state affects data transmission performance of PCI interface.
The 64-bit read transfer waveform of PCI local interface is shown on figure 9.2, and wait-state
mode is invalid on read transfer. While the iM_SEL signal of the local interface isn’t asserted high,
read or write transmission of the local interface has to ignore.

iCLK |

rooress @EEIIX 5 XXX <
e o (I 30 X B X X <D
ST s SO O SO ST G S
S B P e e T A T
eI T N

Do not exceed 5 clock cycles

Figure 9.1 64-bit Write transfer waveform of PCI local interface

PCI Local Write/Read Interface 62

Rasic

www. terasic.com

Rasic

www. terasic.com

e NN TN TN TN
erer e S X} I T T
ore T L 8
oREAD_DATAé< > DU)4 mé)4 m;)4 D3 >< «

! At least 5 clock cycles j

Figure 9.2 64-bit Read transfer waveform of PCI local interface

9.2 PCI Interrupt

For PCI interrupt, we provide a simple interface that allows user logic of local side to trigger the
event. Figure 9.3 shows how to control the interrupt of PCI local interface. When the
oCTRL_INT_REQ is active one clock cycle, the PCI interrupt will be triggered. Once PCI interrupt
occurs, the software on PC side will clear the interrupt flag of PCI Bridge (it will assert
ICTRL_INT_ACK one clock cycle to acknowledge) and execute the interrupt function.

1
i i i i i i i i
iCTRL_INT_ACK : : ; R 55 ; v L N—
! ! : ! ! ! ! !
oCTRL_INT_REQ ﬁ
1
1

AN

Figure 9.3 Interrupt trigger of PCI local interface

63

Table 9-1 PCI Local Interface’s User Signals (PCI_Interface:Local_Interface)

Name Type | Polarity Description

CLK Input - Clock. The reference clock of PCI local interface.

ADDRESSJ[31..0] Input - Address bus. The ADDRESS][31..0] is a byte-unit
address bus.

WRITE_DATA[63..0] Input - Write data bus. The width of WRITE_DATA bus is
depending on PCI Bus data width (oMODE_64 32).

DATA_BE[7..0] Input - Data bytes enable. If the bit on DATA_BE bus is
asserted high, the byte data of WRITE_DATA is
enabled.

WRITE_REQ Input High | Write request. The WRITE_REQ signal is an output
from PCI bridge that indicates the beginning and
duration of a write operation.

WRITE_ACK Output | High | Write acknowledge. The WRITE_ACK is a user logic
output, indicates the user logic of local side is
accepting data.

READ_REQ Input High | Write request. The READ_REQ signal is an output
from PCI bridge that indicates the beginning and
duration of a read operation.

READ_VALID Input High | Read data valid.

READ_DATA[63..0] Output - Read data bus. The width of READ_DATA bus is
depending on PCI Bus data width (oMODE_64_32).

BURST_CNTJ[31..0] Input - Burst count. Only during read transfer, the
BURST_CNT bus is valid. It indicates the number of
data will be transferred.

MODE_64 32 Input - Data width mode. The MODE_64 32 signal indicates
the width of data bus on PCI local interface.

M_SEL Input High | Interface Select. When the M_SEL signal is asserted,
the PCI bus transmission was decoded to transfer with
this user local interface this time.

MEM_REG_SEL Input - Memory/Register mapping. When the signal
MEM_REG_SEL is asserted high, the mapping of the
transfer is memory. When it is assert low, the
mapping of the transfer is register.

ACCESS_MODE Input - Port/Memory access mode. When the signal

ACCESS_MODE is asserted high, the mode of the
transfer is port access. When it is assert low, the mode
of the transfer is memory access.

PCI Interrupt

64

Rasic

www.Cerasic.com

Rasic

www. terasic.com

Table 9-2 PCI Local Interrupt Signals (on User_Logic)

Name Type | Polarity Description
iICLK Input - Clock. The reference clock output of PCI local
interface.
oCTRL_INT_REQ Output | High | PCl interrupt request. When the signal
oCTRL_INT_REQ is active one clock cycle by user
of PCI local side, the PCI interrupt will be trigger.
iICTRL_INT_ACK Input High | PCl interrupt acknowledge. The iCTRL_INT_ACK is

an output from PCI bridge that indicates the interrupt
acknowledge of host PC.

65

Appendix A

Programming the Serial Configuration
Device

This appendix describes how to program the serial configuration device with Serial Flash Loader
(SFL) function via the JTAG interface. User can program serial configuration devices with a JTAG
indirect configuration (.jic) file. To generate JIC programming files with the Quartus Il software,
users need to generate a user-specified SRAM object file (.sof), which is the input file first. Next,
users need to convert the SOF to a JIC file. To convert a SOF to a JIC file in Quartus Il software,
follow these steps:

B Convert SOF to JIC

1. Choose “Convert Programming Files...” under Quartus’s File menu.

2. In the Programming file type pull-down menu, select the item *“JTAG Indirect
Configuration File (.jic)”.

3. Inthe pull-down menu “Configuration device”, select the targeted serial configuration device
(Select EPCS64).

4. Inthe File name edit box, browse to the target directory and specify an output file name.
5. Select the “SOF Data” in the Input files to convert section, as showing in Figure 0.1.

6. Click “Add File...” button. In the “Select Input File” dialog, select the SOF that you want to
convert to a JIC file, and then click “Open”.

7. Select the “Add Device” in the Input files to convert section, as showing in Figure 0.2.

8. Click OK. The Select Devices page displays.

PCI Interrupt 66

Rasic

www.Cerasic.com

www.Cerasic.com

Specify the input files to convert and the twpe of programming file to generate.
‘f'ou can alza import input file information from ather filez and zave the conversion setup information created here far
future uze,

— Conversion setup file:

Open Corversion Setup Data.. Save Conversion Setup...

— Output programming file

Programming file bwpe:

[ptions... |

File name:

Advanced... |

IJTAG Indirect Configuration File [jic)

Configuration device: IEPESB-’i ﬂ tode: IActive Seral

Ic::.-’altera.-’Bquualtusfoutput_file.iic:

Remate/Local update difference file: I MOME
v Memary Map Fils

— Input files to conwvert

| Properties | Start Address | #ddHex Data

|File/Data area
| o

Add Sof Data
Add File...

Bemove

R L) L

Up

Do

Froperties

i

Generate Cloze

Figure 0.1. Convert Programming Files Dialog Box

Specify the input files to convert and the type of programming file to generate.
‘Yol can also import input file infarmation fran ather files and save the conversion setup information created here for
future use.

— Conwersion setup file

Open Conversion Setup Data. . Save Conversion Setup..

— Output programming File

Programrming file bpe: |JTAG Indirect Configuration File [jic)

[ptions... I

File name:

Advanced... I

Configuration device: I EPCSE4

j tode: IActive Serial

Ic:.-’altera.-’BDa’qualtuSa’outpul_file.iic

Remote/Local update difference file: INDNE

v Memomn Map File

— Input files to convert

Properties Start Address Add Hex Data
= SOF Data Page 0 < auka Add Sof Data
i PCI_DDRZ.sof |[EPaC120F780 |

Add Device...

UEE L) L

Hemove
Up

Down

Eroperties

i

Generate | Cloze |

Figure 0.2. Highlight Flash Loader
9. Select the targeted FPGA that you are using to program the serial configuration device. See
Figure 0.3.

67

10. Click OK. The Convert Programming Files page displays. See Figure 0.4.

11. Click Generate.

— Device family — Device name

CIAFEX I REER] Mew,
ClapEx20K

e Sere: e |
it E o |
ST Hlcratso e |
Sgll'?:ilhl:l Remove |
A oe |
Egt:zt:: ”IG>< ncheck |

oK

Cancel

Figure 0.3. Select Devices Page

Specify the input files to convert and the type of programming file to generate.
Y'ou can alzo import input file information from other files and save the conversion setup information created here for

future use.

— Convergion setup files

Open Conyersion Setup Data... Save Conversion Setup..

— Dutput programming file

Programming file ype:

Dptions... |

File: narme:

Advanced... I

IJTAG Indirect Configuration File [jic)

Configuration device: IEPESB4 j Mode: IActive Serial

|c: faltera/ B0/ quartusAautput_file jic

Remote/Local update difference file: INDNE
v Memory Map File

—Input files to corwert

= S0F Data

Page_0 <autor

t--PCI_DDR2 sof

EF3C120F750

Add Hex D ata
Add Sof Data
Add evice,..

Hemawve

Do

PFroperties

LEELRE S0 L

Generate

| Cloze

Figure 0.4. Convert Programming Files Page

PCI Interrupt

68

www.Cerasic.com

Rasic

www. terasic.com

B Write JIC File into Serial Configuration Device

To program the serial configuration device with the JIC file that you just created, add the file to the
Quartus Il Programmer window and follow the steps:

1. When the SOF-to-JIC file conversion is complete, add the JIC file to the Quartus II
Programmer window:
i. Choose Programmer (Tools menu). The Chainl.cdf window displays.
ii. Click Add File. From the Select Programming File page, browse to the JIC file.
iii. Click Open.

2. Program the serial configuration device by checking the corresponding Program/Configure
box, a Factory default SFL image will be load (See Figure 0.5).

2, Hadware Setup.| [USE Blaster (U561 Mods: [1T5 =] Frogess: | 0%

™ Enable realtime ISP to allow backaround programming (for M 1| devices)

Blark-

Prograrm/ Check Examine
O O

W Start | File Carfione

o i Factory default SFL image EP3C120 00000000 FFFFFFFF
P i C/alera/80/quartus /o, EPCSE4 49021982 O O O O O
m Auto Detect

K Delete

G Add File...
W& Change Rile..
B Zave Fie.
(2 Add Devics...
A s

P Do

Device Checksum Usercode Werify Erasze

Security
Bit

ISP
CLAMP
O

Figure 0.5. Quartus Il programmer window with one JIC file

3. Click Start to program serial configuration device.

B Erase the Serial Configuration Device

To erase the existed file in the serial configuration device, follow the steps listed below:
1. Choose Programmer (Tools menu). The Chainl.cdf window displays.
2. Click Add File. From the Select Programming File page, browse to a JIC file.

3. Click Open.

4. Erase the serial configuration device by checking the corresponding Erase box, a Factory
default SFL image will be load (See Figure 0.6).

69

éa Hardware Setup... ‘ USE-Blaster [USB-1] tade: IJTAG j Progress: | a

[~ Enable realtime ISP to allow hackground progiamming [for Mas 1| devices)

i

wh Stan | i3 |DEViCE | Checksum |USEchde Eﬁ;&?; Werlfy Eﬁggk | Examine SECE:'"}' Erase Cgidp |
a5t Factory default SFLimage EP3C120 00000000 FFFFFFFF O O O]
H i Ci/altera/B0/quanussou.. EPCSE4 43021382 O O O 0O 0 0

g#ﬂ Ao Detect
¥ Delete

& Add File. .
B Change File..
B 5=veFie..
(2 Add Device...
AU

.ﬁ'ﬂ D

Figure 0.6 Erasing setting in Quartus Il programmer window

5. Click Start to erase the serial configuration device.

PCI Interrupt 70

www.Cerasic.com

	Chapter 1 PCI Package
	1.1 Package contents
	1.2 Getting Help
	1.3 Revision History
	2.1 General Description
	2.2 Layout and Components
	2.3 Block Diagram of the PCI Board
	2.4 Power-up the PCI Board
	3.1 Clocking Circuitry
	3.1.1 Clock & Programmable PLL

	3.2 Switch
	3.3 HSTC Expansion Connectors
	3.4 Off-Chip Memory
	3.4.1 DDR2 SO-DIMM Module

	 Chapter 4 Setup PCI Board
	4.1 System Requirement
	4.2 Hardware Installation: PCI Board
	4.3 Software Installation: PCI Kernel Driver
	4.4 Install License File
	4.5 Diagnoses

	 Chapter 5 PCI System Builder
	5.1 Introduction
	5.2 Quartus Top Design
	5.3 Built-in Logic
	5.4 Save Configuration
	5.5 Generated Code

	1
	Chapter 6 Host Software Library and Utility
	6.1 PCI Software Stack
	6.2 Data Structure in TERASIC_API.h
	6.3 API List of TERASIC_API.DLL
	6.4 API Description of TERASIC_DLL
	6.5 PCI Control Panel Utility

	 Chapter 7 Reference Design
	7.1 Remote Control LED
	7.2 Button IRQ
	7.3 DDR2 Access
	8.1 Principle of Read/Write Port
	8.1.1 Write Port
	8.1.2 Read Port
	8.2 Port Interface
	8.2.1 Simple Write Port
	8.2.2 Simple Read Port
	8.2.3 Enhanced port
	9.1 PCI Local Write/Read Interface
	9.2 PCI Interrupt

	Appendix C Programming the Serial Configuration device

