MGA-638P8 High Linearity Low Noise Amplifier

Data Sheet

Description

Avago Technologies' MGA-638P8 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA). This LNA has low noise and high linearity achieved through the use of Avago Technologies' proprietary 0.25 µm GaAs Enhancement-mode pHEMT process. It is housed in the miniature 2.0 x 2.0 x 0.75 mm³ 8-pin Dual-Flat-Non-Lead (DFN) package. The device is designed for optimum use from 2.5 GHz up to 4.0 GHz. The compact footprint and low profile coupled with low noise, high gain and high linearity make this an ideal choice as a low noise amplifier for cellular infrastructure applications such as LTE, GSM, CDMA, W-CDMA, CDMA2000 & TD-SCDMA. For optimum performance at lower frequency from 450 MHz up to 1.5 GHz, MGA-636P8 is recommended. For optimum performance from 1.5 GHz up to 2.5 GHz, MGA-637P8 is recommended. All these 3 products, MGA-636P8, MGA-637P8 and MGA-638P8 share the same package and pinout configuration.

Pin Configuration and Package Marking

2.0 x 2.0 x 0.75 mm³ 8-lead DFN

Note:

Package marking provides orientation and identification "38" = Product Code "X" = Month Code

It is recommended to ground Pin1, 4 and 8 which are Not Used.

Features

- High linearity performance.
- Low Noise Figure.
- GaAs E-pHEMT Technology^[1].
- Low cost small package size.
- Integrated with active bias and option to access FET gate.
- Integrated power down control pin.

Specifications

2.5 GHz; 4.8 V, 84 mA

- 17.3 dB Gain
- 0.87 dB Noise Figure
- 14 dB Input Return Loss
- +22.6 dBm Input IP3
- +22.2 dBm Output Power at 1 dB gain compression

Applications

- Cellular infrastructure applications such as LTE, GSM, CDMA, W-CDMA, CDMA2000 & TD-SCDMA.
- Other low noise applications.

Note:

1. Enhancement mode technology employs positive Vgs, thereby eliminating the need of negative gate voltage associated with conventional depletion mode devices.

Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 100 V ESD Human Body Model = 350 V Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control.

Simplified Schematic^[1]

Note:

1. Device is turned ON when PwrDwn pin is applied with 0 V or left open. Device is turned OFF when PwrDwn pin is applied with 3.3 V

Absolute Maximum Rating $^{[1]}T_A=25^{\circ}C$

Symbol	Parameter	Units	Absolute Maximum
V _{dd}	Device Voltage, RF output to ground	V	5.5
l _{dd}	Drain Current	mA	125
Vbias1	Bias Voltage	V	5.5
V _{pwrDwn}	Power Down Voltage	V	5.5
P _{in,max}	CW RF Input Power	dBm	+24
P _{diss}	Total Power Dissipation	W	0.61
Tj	Junction Temperature	°C	150
T _{STG}	Storage Temperature	°C	-65 to 150

Thermal Resistance

Thermal Resistance ^[2]	
$(V_{dd} = 4.8 V, I_{dd} = 84 mA)$	
$\theta_{jc} = 67^{\circ}C/W$	

Notes:

- 1. Operation of this device in excess of any of these limits may cause permanent damage.
- 2. Thermal resistance measured using Infra-Red Measurement Technique.
- 3. Power dissipation with unit turned on. Board temperature T_C is 25° C. Derate at 14.9 mW/°C for $T_c>105.8^\circ$ C.

Electrical Specifications^[1,4]

 $T_A = 25^{\circ}$ C, Vdd = Vbias1 = 4.8 V, RF measurement at 2.5 GHz, measured on demo board in Figure 5 with component listed in Table1.

Parameter and Test Condition	Units	Min.	Тур.	Max.
Bias Current	mA	60	84	110
Current at V_{PwrDwn} pin when $V_{PwrDwn} = 3.3 V$ (Power Down mode)	mA	-	0.15	_
Gain	dB	16	17.3	19
Noise Figure	dB	-	0.87	1.15
Input Third Order Intercept Point	dBm	21	22.6	-
Output Power at 1dB Gain Compression	dBm	-	22.2	_
Input Return Loss, 50 Ω source	dB	-	14	_
Output Return Loss, 50 Ω load	dB	_	10	-
	Parameter and Test ConditionBias CurrentCurrent at V _{PwrDwn} pin when V _{PwrDwn} = 3.3 V (Power Down mode)GainGainNoise FigureInput Third Order Intercept PointOutput Power at 1dB Gain CompressionInput Return Loss, 50 Ω sourceOutput Return Loss, 50 Ω load	Parameter and Test ConditionUnitsBias CurrentmACurrent at V _{PwrDwn} pin when V _{PwrDwn} = 3.3 V (Power Down mode)mAGaindBNoise FiguredBInput Third Order Intercept PointdBmOutput Power at 1dB Gain CompressiondBmInput Return Loss, 50 Ω sourcedBOutput Return Loss, 50 Ω loaddB	Parameter and Test ConditionUnitsMin.Bias CurrentmA60Current at V _{PwrDwn} pin when V _{PwrDwn} = 3.3 V (Power Down mode)mA-GaindB16Noise FiguredB16Input Third Order Intercept PointdBm21Output Power at 1dB Gain CompressiondBm-Input Return Loss, 50 Ω sourcedB-Output Return Loss, 50 Ω loaddB-	Parameter and Test ConditionUnitsMin.Typ.Bias CurrentmA6084Current at V _{PwrDwn} pin when V _{PwrDwn} = 3.3 V (Power Down mode)mA-0.15GaindB1617.3Noise FiguredB-0.87Input Third Order Intercept PointdBm2122.6Output Power at 1dB Gain CompressiondBm-22.2Input Return Loss, 50 Ω sourcedB-14Output Return Loss, 50 Ω loaddB-10

Notes:

1. Measurements at 2.5 GHz obtained using demo board described in Figure 5.

2. For NF data, board losses of the input have not been de-embedded.

3. IIP3 test condition: $F_{RF1} = 2.500 \text{ GHz}$, $F_{RF2} = 2.501 \text{ GHz}$ with input power of -10 dBm per tone.

4. Use proper bias, heatsink and derating to ensure maximum channel temperature is not exceeded. See absolute maximum ratings and application note for more details.

Product Consistency Distribution Charts^[1, 2]

Figure 3. IIP3, LSL = 21 dBm, nominal = 22.6 dBm

Figure 2. NF, nominal = 0.87 dB, USL = 1.15 dB

Figure 4. Gain, LSL = 16 dB, nominal = 17.3 dB, USL = 19 dB

Notes:

1. Distribution data sample size is 500 samples taken from 3 different wafer lots. Future wafers allocated to this product may have nominal values anywhere between the upper and lower limits.

2. Circuit trace losses have not been de-embedded from measurements above.

Demo Board Layout

Figure 5. Demo Board Layout Diagram

- Recommended PCB material is 10 mils Rogers RO4350.
- Suggested component values may vary according to layout and PCB material.

Demo Board Schematic

Truth Table

	V _{PwrDwn} (V)
LNA Mode	0 or open
Power Down Mode	3.3

Figure 6. Demo Board Schematic Diagram

Notes:

- The schematic is shown with the assumption that similar PCB is used for all MGA-636P8, MGA-637P8 and MGA-638P8.
- Detail of the components needed for this product is shown in Table 1.

Part	Size	Value	Detail Part Number
C1	0402	1.8 pF (Murata)	GRM1555C1H1R8CB01D
C2	0402	100 pF (Murata)	GRM1555C1H101JD01D
C5, C6, C7, C8	0603	4.7 μF (Murata)	GRM188R60J475KE19D
C3, C4	0402	Not Used	
L1	0402	8.2 nH (Toko)	LLP1005-FH8N2C
L2	0402	5.6 nH (Toko)	LLP1005-FH5N6C
L3	0402	1.8 nH (Toko)	LLP1005-FH1N8C
Rb	0402	680 ohm (Rohm)	MCR004YZPJ680
R1	0402	51 ohm (Rohm)	MCR004YZPJ510
R2	0402	0 ohm (Rohm)	MCR01MZPJ000

Table 1. Component list for 2.5 GHz matching

Notes:

C1, C2 are DC blocking capacitors

C1, L1, L3 input match for NF

L2 output match for IP3

C5, C6, C7, C8 are bypass capacitors R1 is a stabilizing resistor

Rb is the biasing resistor

Typical Performance

RF performance at $T_A = 25^{\circ}$ C, Vdd = 4.8 V, Idd = 84 mA, measured using 50 ohm input and output board unless stated otherwise. IIP3 test condition: F_{RF1} - F_{RF2} = 1 MHz with input power of -10 dBm per tone.

Figure 7. Fmin vs Idd at 4.8 V at 2.5 GHz

Figure 9. Gain vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 2.5 GHz

Figure 11. IIP3 vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 2.5 GHz

Figure 8. Fmin vs Idd at 4.8 V at 2 GHz

Figure 10. Gain vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 2 GHz

Figure 12. IIP3 vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 2 GHz

Figure 14. Gain vs Frequency for Optimum IIP3 and Fmin at 4.8 V 84 mA

Figure 15. IIP3 vs Frequency for Optimum IIP3 and Fmin at 4.8 V 84 mA

Below is the table showing the MGA-638P8 Reflection Coefficient Parameters tuned for Maximum IIP3, Vdd = 4.8 V, Idd = 84 mA.

Frequency	Gamma Load pos	ition	IIP3	
(GHz)	Magnitude	Angle	(dBm)	
1.9	0.45	-69.6	26.8	
2	0.54	-68.1	28.2	
2.2	0.45	-69.8	31	
2.5	0.45	-58	30	
2.7	0.36	-57.7	31.4	
3.3	0.18	-89.9	32.1	
3.5	0.18	-59.9	34	

Figure 16. RFinput and RFoutput Reference Plane

Notes:

- 1. The Maximum IIP3 values are calculated based on Load pull measurements on approximately 100 different impedances using Focus Load pull test system.
- 2. Measurements are conducted on 0.010 inch thick ROGER 4350. The input reference plane is at the end of the RFin pin and the output reference plane is at the end of the RFout pin as shown in Figure 16.

Typical Performance

RF performance at $T_A = 25^{\circ}$ C, Vdd = Vbias1 = 4.8 V, Idd = 84 mA, LNA mode, measured on demo board in Figure 5. Signal = CW unless stated otherwise. Application Test Circuit is shown in Figure 6 and Table 1. IIP3 test condition: F_{RF1} - F_{RF2} = 1 MHz with input power of -10 dBm per tone.

Figure 19. IIP3 vs Frequency vs Temperature

Figure 20. OP1dB vs Frequency vs Temperature

Figure 21. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs Frequency

Figure 23. Idd vs Rb

Figure 22. k-factor vs Frequency vs Temperature

Figure 24. Idd vs V_{PwrDwn}

Typical Scattering Parameters, Vdd = 4.8 V, Idd = 84 mA

LNA SPAR (100 MHz – 20 GHz)

Freq	S11	S11	S21	S21	S12	S12	S22	S22
(GHz)	(dB)	(ang)	(dB)	(ang)	(dB)	(ang)	(dB)	(ang)
0.1	0.052	-25.318	34.68	152.786	-47.737	91.863	-4.011	-28.89
0.5	-3.786	-94.894	28.92	107.281	-37.408	58.237	-9.104	-52.056
0.7	-4.926	-113.237	26.654	95.227	-35.752	55.654	-10.055	-57.82
0.9	-5.619	-126.296	24.794	85.752	-34.427	54.436	-10.498	-62.723
1.0	-5.94	-130.828	24.002	81.827	-33.793	54.206	-10.523	-63.981
1	-6.855	-149.182	20.776	64.411	-31.307	51.726	-10.416	-74.85
1.5	-6.979	-155.224	19.732	57.966	-30.494	50.16	-10.335	-80.854
1.7	-7.065	-160.403	18.78	51.816	-29.76	48.458	-10.19	-86.86
1.9	-7.111	-162.698	18.329	48.898	-29.413	47.834	-10.067	-89.923
2.0	-7.134	-172.674	16.343	34.267	-27.955	42.754	-9.537	-104.635
2.5	-7.136	179.587	14.633	20.497	-26.738	37.613	-8.876	-118.233
3	-7.142	173.225	13.156	7.35	-25.665	32.748	-8.157	-130.639
3.5	-7.139	167.248	11.896	-4.959	-24.685	27.439	-7.477	-143.5
4	-7.089	161.143	10.78	-17.688	-23.859	21.999	-7.005	-155.432
4.5	-6.942	155.016	9.656	-30.521	-23.2	16.433	-6.443	-167.299
5	-6.655	148.942	8.55	-43.17	-22.633	11	-5.941	-178.746
5.5	-6.451	142.125	7.548	-55.893	-22.01	5.398	-5.508	169.605
6	-5.788	130.272	5.404	-80.204	-21.138	-5.826	-4.575	148.209
7	-5.04	122.162	3.238	-102.483	-20.538	-15.36	-3.749	131.73
8	-4.687	113.451	1.055	-123.348	-19.722	-23.213	-3.697	119.517
9	-4.53	100.173	-0.705	-145.751	-18.579	-35.202	-2.821	101.483
10	-4.256	84.617	-3.251	-170.507	-18.185	-49.114	-2.62	75.099
11	-3.95	69.227	-6.332	165.37	-17.868	-64.111	-2.273	51.688
12	-3.737	53.796	-10.138	151.871	-18.239	-71.411	-3.688	41.604
13	-3.546	40.2	-12.417	132.898	-16.923	-83.447	-2.495	39.518
14	-3.424	31.813	-16.055	116.123	-16.237	-95.104	-2.974	25.468
15	-3.498	23.38	-20.865	103.357	-15.662	-105.573	-3.854	8.667
16	-3.526	11.48	-28.925	85.718	-15.097	-123.669	-3.569	-9.967
17	-3.178	-0.579	-41.317	-143.263	-15.974	-133.494	-3.394	-14.401
18	-2.789	-13.818	-28.286	-139.464	-16.249	-148.305	-2.439	-20.145
19	-2.6	-28.557	-24.254	-152.264	-16.13	-161.015	-2.919	-18.344
20	0.052	-25.318	34.68	152.786	-47.737	91.863	-4.011	-28.89

Figure 25. RFinput and RFoutput Reference Plane

Typical Noise Parameters, Vdd = 4.8 V, Idd = 84 mA

Freq GHz	Fmin dB	Γ _{opt} Mag.	Γ_{opt} Ang.	R _{n/50}
1.9	0.656	0.193	152.8	0.044
2	0.664	0.206	156.4	0.040
2.2	0.678	0.234	163.5	0.035
2.5	0.704	0.274	174.2	0.034
2.7	0.736	0.301	181.4	0.036
3.3	0.958	0.383	202.8	0.045
3.5	1.12	0.41	209.9	0.045

Notes:

1. The Fmin values are based on noise figure measurements at 100 different impedances using Focus source pull test system. From these measurements a true Fmin is calculated.

2. Scattering and noise parameters are measured on coplanar waveguide made on 0.010 inch thick ROGER 4350. The input reference plane is at the end of the RFinput pin and the output reference plane is at the end of the RFoutput pin as shown in Figure 25.

DFN2X2 Package Dimensions

Part Number Ordering Information

Part Number	No. of Devices	Container
MGA-638P8-BLKG	100	Antistatic Bag
MGA-638P8-TR1G	3000	7 inch Reel

Notes:

- 1. All dimensions are in millimeters.
- 2. Dimensions are inclusive of plating.
- 3. Dimensions are exclusive of mold ash and metal burr.

BOTTOM VIEW

Recommended PCB Land Pattern and Stencil Design

PCB Land Pattern

Metal surface

Soldermask Open

All Dimension are in millimeters

Notes:

1. Stencil thickness is 0.1 mm (4 mils).

2. All dimensions are in mm unless otherwise specified.

Device Orientation

Tape Dimensions

	DESCRIPTION	SYMBOL	SIZE (mm)	SIZE (INCHES)
CAVITY	LENGTH	A ₀	2.30 ± 0.05	0.091 ± 0.004
	WIDTH	B ₀	2.30 ± 0.05	0.091 ± 0.004
	DEPTH	K ₀	1.00 ± 0.05	0.039 ± 0.002
	PITCH	P	4.00 ± 0.10	0.157 ± 0.004
	BOTTOM HOLE DIAMETER	D ₁	1.00 + 0.25	0.039 + 0.002
PERFORATION	DIAMETER	D	1.50 ± 0.10	0.060 ± 0.004
	PITCH	Po	4.00 ± 0.10	0.157 ± 0.004
	POSITION	E	1.75 ± 0.10	0.069 ± 0.004
CARRIER TAPE	WIDTH	W	8.00 ± 0.30	0.315 ± 0.012
			8.00 ± 0.10	0.315 ± 0.004
	THICKNESS	t ₁	0.254 ± 0.02	0.010 ± 0.0008
COVER TAPE	WIDTH	C	5.4 ± 0.10	0.205 ± 0.004
	TAPE THICKNESS	Tt	0.062 ± 0.001	0.0025 ± 0.0004
DISTANCE	CAVITY TO PERFORATION (WIDTH DIRECTION)	F	3.50 ± 0.05	$\textbf{0.138} \pm \textbf{0.002}$
	CAVITY TO PERFORATION (LENGTH DIRECTION)	P ₂	2.00 ± 0.05	$\textbf{0.079} \pm \textbf{0.002}$

Reel Dimensions – 7 inch

For product information and a complete list of distributors, please go to our web site: **www.avagotech.com**

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. AV02-2993EN - September 29, 2011

