

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com/, use http://www.nexperia.com/

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4351 8-channel analog multiplexer/demultiplexer with latch

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT4351

FEATURES

- Wide analog input voltage range: ± 5 V
- Low "ON" resistance:

80 Ω (typ.) at $V_{CC} - V_{EE} = 4.5 \text{ V}$

70 Ω (typ.) at V_{CC} – V_{EE} = 6.0 V

60 Ω (typ.) at $V_{CC} - V_{EE} = 9.0 \text{ V}$

- Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals
- Typical "break before make" built in
- · Address latches provided
- · Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT4351 are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4351 are 8-channel analog multiplexers/demultiplexers with three select inputs (S_0 to S_2), two enable inputs (\overline{E}_1 and E_2), a latch enable input (\overline{LE}), eight independent inputs/outputs (Y_0 to Y_7) and a common input/output (Z).

With \overline{E}_1 LOW and E_2 is HIGH, one of the eight switches is selected (low impedance ON-state) by S_0 to S_2 . The data at the select inputs may be latched by using the active LOW latch enable input ($\overline{\text{LE}}$). When $\overline{\text{LE}}$ is HIGH the latch is transparent. When either of the two enable inputs, \overline{E}_1 (active LOW) and E_2 (active HIGH), is inactive, all 8 analog switches are turned off.

 V_{CC} and GND are the supply voltage pins for the digital control inputs (S $_0$ to S $_2$, \overline{LE} , \overline{E}_1 and E $_2$). The V $_{CC}$ to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (Y $_0$ to Y $_7$, and Z) can swing between V $_{CC}$ as a positive limit and V $_{EE}$ as a negative limit

V_{CC} - V_{EE} may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

QUICK REFERENCE DATA

 $V_{EE} = GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STIVIBUL	PARAMETER	CONDITIONS	нс	нст	UNII
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 , E_2 or S_n to V_{os}	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega; V_{CC} = 5 \text{ V}$	27	35	ns
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 , E_2 or S_n to V_{os}		21	23	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	25	25	pF
Cs	max. switch capacitance				
	independent (Y)		5	5	pF
	common (Z)		25	25	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\}$$
 where:

f_i = input frequency in MHz

 f_0 = output frequency in MHz

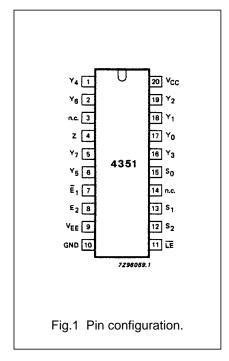
C_L = output load capacitance in pF

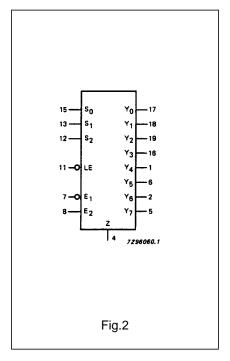
C_S = max. switch capacitance in pF

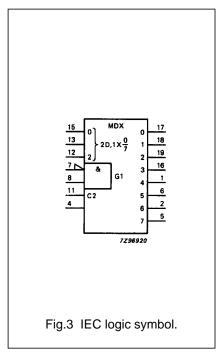
 $\sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} = \text{sum of outputs}$

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V


ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".

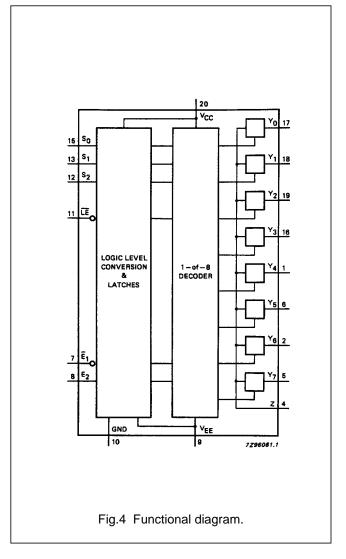

74HC/HCT4351

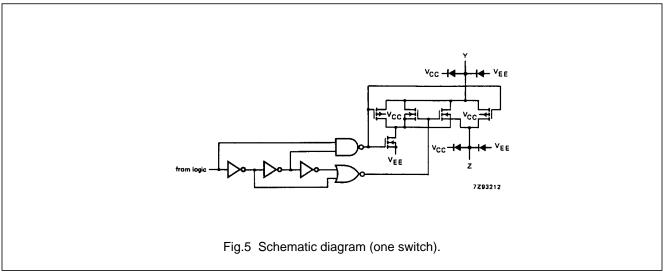
PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION							
4	Z	common							
3, 14	n.c.	not connected							
7	Ē₁	enable input (active LOW)							
8	E ₂	enable input (active HIGH)							
9	V _{EE}	negative supply voltage							
10	GND	ground (0 V)							
11	<u>LE</u>	latch enable input (active LOW)							
15, 13, 12	S ₀ to S ₂	select inputs							
17, 18, 19, 16, 1, 6, 2, 5	Y ₀ to Y ₇	independent inputs/outputs							
20	V _{CC}	positive supply voltage							

74HC/HCT4351

FUNCTION TABLE


		INPU	TS			CHANNEL
Ē ₁	E ₂	LE	S ₂	S ₁	S ₀	ON
Н	Х	Χ	Χ	Χ	Χ	none
X	L	Х	Х	X	Х	none
L	Н	Н	L	L	L	Y_0
L	Н	Н	L	L	Н	Y ₁
L	Н	Н	L	Н	L	Y ₂
L	Н	Н	L	Н	Н	Y ₃
L	Н	Н	Н	L	L	Y_4
L	Н	Н	Н	L	Н	Y ₅
L	Н	Н	Н	Н	L	Y ₆
L	Н	Н	Н	Н	Н	Y ₇
L	Н	L	Х	Х	Х	(1)
Χ	Х	\downarrow	Х	Х	Х	(2)


Notes

- 1. Last selected channel "ON".
- 2. Selected channels latched.
- 3. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care
 - \downarrow = HIGH-to-LOW \overline{LE} transition

APPLICATIONS

- · Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- · Signal gating

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	٧	
±I _{IK}	DC digital input diode current		20	mA	for $V_I < -0.5 \text{ V}$ or $V_I > V_{CC} + 0.5 \text{ V}$
±I _{SK}	DC switch diode current		20	mA	for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} + 0.5 \text{ V}$
±I _S	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$
±I _{EE}	DC V _{EE} current		20	mA	
±I _{CC;} ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

Note to ratings

1. To avoid drawing V_{CC} current out of terminal Z, when switch current flows in terminals Y_n , the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{CC} current will flow out of terminals Y_n . In this case there is no limit for the voltage drop across the switch, but the voltages at Y_n and Z may not exceed V_{CC} or V_{EE} .

RECOMMENDED OPERATING CONDITIONS

CYMPOL	PARAMETER		74HC			74HC	Г	ш	CONDITIONS
SYMBOL	PARAINETER	min.	typ.	max.	min.	typ.	max.	UNIT	CONDITIONS
V _{CC}	DC supply voltage V _{CC} -GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
V_{CC}	DC supply voltage V _{CC} -V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7
VI	DC input voltage range	GND		V _{CC}	GND		V_{CC}	V	
Vs	DC switch voltage range	V _{EE}		V_{CC}	V _{EE}		V_{CC}	V	
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTERISTICS
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

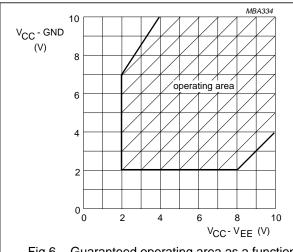


Fig.6 Guaranteed operating area as a function of the supply voltages for 74HC4351.

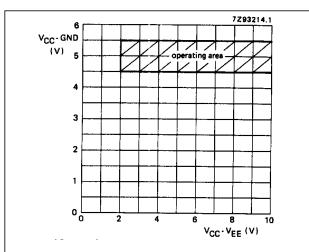


Fig.7 Guaranteed operating area as a function of the supply voltages for 74HCT4351.

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

				7	Γ _{amb} (°	C)				TEST CONDITIONS					
				7	4HC/H	СТ									
SYMBOL	PARAMETER	+25			-40 to +85		−40 to +125		UNIT	V _{CC} (V)	V _{EE} (V)	I _S (μ A)	V _{is}	Vı	
		min.	typ.	max.	min.	max.	min.	max.							
R _{ON}	ON resistance (rail)		- 100 90 70	- 180 160 130		- 225 200 165		- 270 240 195	Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC} to V _{EE}	V _{IN} or V _{IL}	
R _{ON}	ON resistance (rail)		150 80 70 60	- 140 120 105		- 175 150 130		- 210 180 160	Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{EE}	V _{IH} or V _{IL}	
R _{ON}	ON resistance (rail)		150 90 80 65	- 160 140 120		- 200 175 150		- 240 210 180	Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC}	V _{IH} or V _{IL}	
ΔR _{ON}	maximum Δ ON resistance between any two channels		9 8 6						Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5		V _{CC} to V _{EE}	V _{IH} or V _{IL}	

Notes to DC characteristics

- At supply voltages (V_{CC} V_{EE}) approaching 2.0 V, the analog switch ON-resistance becomes extremely non-linear.
 There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.8.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

	PARAMETER				T _{amb} (°C)		TEST CONDITIONS					
OVMDOL					74H0								
SYMBOL		+25			-40 t	o +85	−40 t	o +125	UNIT	V _{CC}	V _{EE} (V)	Vı	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(' /	(*)		
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0			
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0			
±I _I	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μΑ	6.0 10.0	0	V _{CC} or GND	
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	$V_S \mid$ = $V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch OFF-state current all channels			0.4		4.0		4.0	μΑ	10.0	0	V _{IH} or V _{IL}	$V_S \mid$ = $V_{CC} - V_{EE}$ (see Fig.10)
±I _S	analog switch ON-state current			0.4		4.0		4.0	μΑ	10.0	0	V _{IH} or V _{IL}	$V_S \mid$ = $V_{CC} - V_{EE}$ (see Fig.11)
Icc	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μА	6.0 10.0	0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{os} = V_{CC}$ or V_{EE}

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TE	ST CC	NDITIONS
OVMDOL	DADAMETED				74HC							
SYMBOL	PARAMETER		+25		−40 t	o +85	-40 to	0 +125	UNIT	V _{CC}	V _{EE} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(-,	(-,	
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		14 5 4 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = \infty$; $C_L = 50 \text{ pF}$ (see Fig.17)
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 to V_{os}		85 31 25 28	300 60 51 55		375 75 64 69		450 90 77 83	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time E ₂ to V _{os}		85 31 25 25	300 60 51 55		375 75 64 69		450 90 77 83	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time LE to V _{os}		91 33 26 27	300 60 51 55		375 75 64 69		450 90 77 83	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		88 32 26 25	300 60 51 50		375 75 64 63		450 90 77 75	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 to V_{os}		69 25 20 20	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time E ₂ to V _{os}		72 26 21 19	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time LE to V _{os}		83 30 24 26	275 55 47 45		345 69 59 56		415 83 71 68	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time S_n to V_{os}		80 29 23 24	275 55 47 48		345 69 59 60		415 83 71 72	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

				7	amb (°	C)				TEST CONDITIONS			
SYMBOL	PARAMETER				74HC				UNIT				
STWIBOL	TANAMETER	+25			-40 to +85 -40 to			0 to +125		V _{CC}	V _{EE} (V)	OTHER	
		min.	typ.	max.	min.	max.	min.	max.		('')	(,		
t _{su}	set-up time S _n to LE	60 12 10 18	17 6 5 9			75 15 13 23		90 18 15 27	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)	
t _h	hold time S _n to LE	5 5 5 5	-8 -3 -2 -4			5 5 5 5		5 5 5 5	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)	
t _W	LE minimum pulse width HIGH	100 20 17 25	11 1 3 7			125 25 21 31		150 30 26 38	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)	

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0)

					T _{amb} (°C)					TEST	CONDIT	TIONS
CVMDOL	PARAMETER				74HC	Т							
SYMBOL	PARAMETER		+25		-40	to +85	-40 t	o +125	UNIT	V _{CC}	V _{EE} (V)	Vı	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(-,	(-,		
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5			
±l _l	input leakage current			0.1		1.0		1.0	μА	5.5	0	V _{CC} or GND	
±Ι _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μА	10.0	0	V _{IH} or V _{IL}	$V_S \mid$ = $V_{CC} - V_{EE}$ (see Fig.10)
±Ι _S	analog switch OFF-state current all channels			0.4		4.0		4.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.10)
±Ι _S	analog switch ON-state current			0.4		4.0		4.0	μА	10.0	0	V _{IH} or V _{IL}	$ V_S = V_{CC} - V_{EE}$ (see Fig.11)
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μА	5.5 5.0	0 -5.0	V _{CC} or GND	$\begin{aligned} &V_{is} = V_{EE} \\ &\text{or } V_{CC}; \\ &V_{os} = V_{CC} \\ &\text{or } V_{EE} \end{aligned}$
Δl _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μА	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND

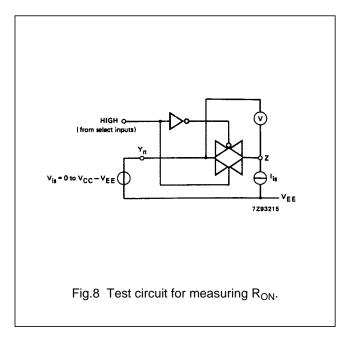
Note to HCT types

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
\overline{E}_1,E_2	0.50
C	0.50
LE	1.5

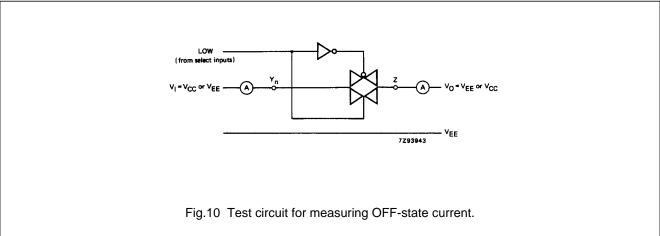
8-channel analog multiplexer/demultiplexer with latch

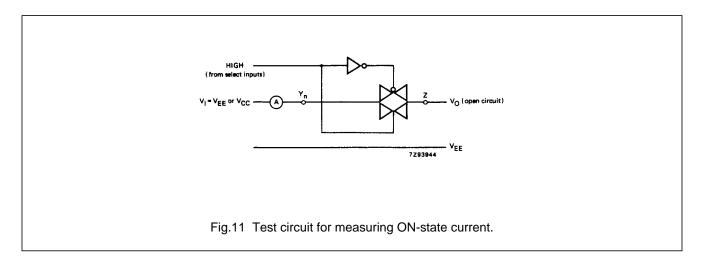
74HC/HCT4351


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				,	T _{amb} (°C)				TE	ST CC	NDITIONS
CVMDOL	DADAMETED				74HC	T			LINUT			
SYMBOL	PARAMETER		+25		-40 f	to +85	-40 t	o +125	UNIT	V _{CC}	V _{EE} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(-)	(-,	
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		6 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	$R_L = \infty$; $C_L = 50 \text{ pF}$ (see Fig.17)
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 to V_{os}		40 31	75 60		94 75		113 90	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time E ₂ to V _{os}		35 26	70 50		88 63		105 75	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time LE to V _{os}		42 37	75 60		94 75		113 90	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		39 30	75 60		94 75		113 90	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 to V_{os}		27 20	55 40		69 50		83 60	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time E ₂ to V _{os}		32 26	60 50		75 63		90 75	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time LE to V _{os}		33 30	60 55		75 69		90 83	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PHZ} / t _{PLZ}	turn "OFF" time S _n to V _{os}		33 29	65 55		81 69		98 83	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{su}	set-up time S _n to $\overline{\text{LE}}$	12 14	6 7			15 18		18 21	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _h	hold time S _n to LE	5 5	-1 -2			5 5		5 5	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)
t _W	LE minimum pulse width HIGH	25 25	13 13			31 31		38 38	ns	4.5 4.5	0 -4.5	$R_L = 1 \text{ k}\Omega;$ $C_L = 50 \text{ pF}$ (see Fig.19)


8-channel analog multiplexer/demultiplexer with latch


74HC/HCT4351

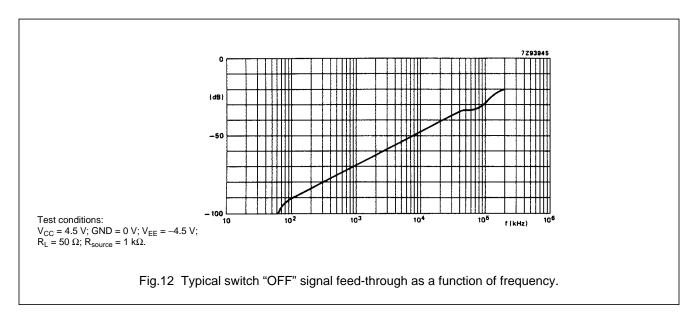
 $\label{eq:region_eq} \begin{aligned} & \text{Fig.9} & \text{Typical R}_{ON} \text{ as a function of input voltage} \\ & \text{V_{is} for $V_{is} = 0$ to $V_{CC} - V_{EE}$.} \end{aligned}$

8-channel analog multiplexer/demultiplexer with latch

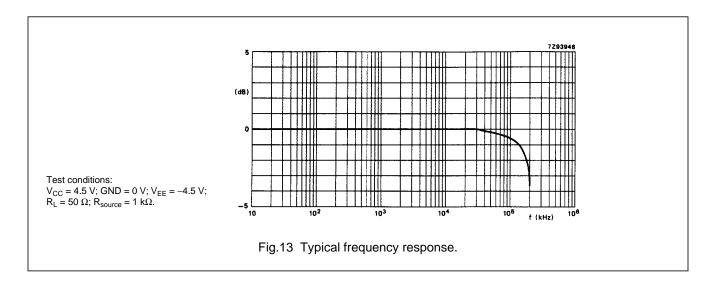
74HC/HCT4351

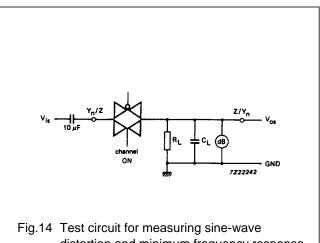
ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values


GND = 0 V; T_{amb} = 25 °C

SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega$; $C_L = 50 pF$ (see Figs 12 and 15)
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	120 220	mV mV	4.5 4.5	0 -4.5		$R_L = 600 \ \Omega; \ C_L = 50 \ pF;$ $f = 1 \ MHz \ (\overline{E}_1, \ E_2 \ or \ S_n,$ square-wave between V_{CC} and GND, $t_r = t_f = 6 \ ns)$ (see Fig.16)
f _{max}	minimum frequency response (-3dB)	160 170	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Figs 13 and 14)
Cs	maximum switch capacitance independent (Y) common (Z)	5 25	pF pF				


Notes to AC characteristics


- 1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

 V_{is} is the input voltage at a Y_n or Z terminal, whichever is assigned as an input. V_{os} is the output voltage at a Y_n or Z terminal, whichever is assigned as an output.

74HC/HCT4351

distortion and minimum frequency response.

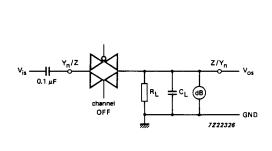
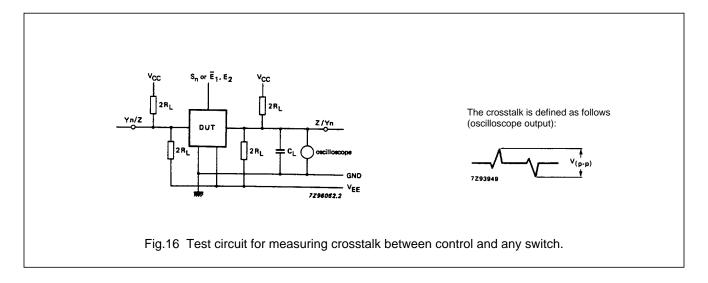
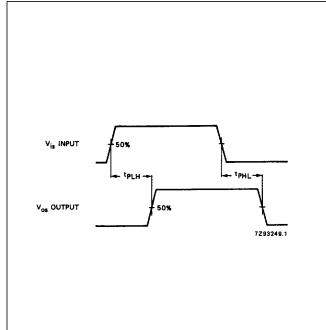
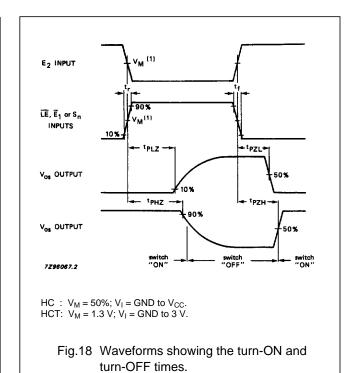
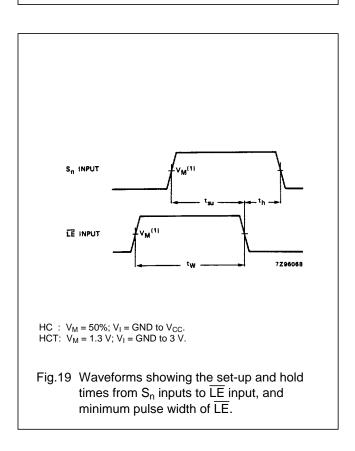
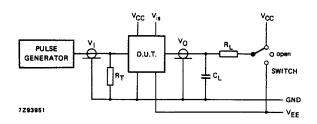




Fig.15 Test circuit for measuring switch "OFF" signal feed-through.

74HC/HCT4351

AC WAVEFORMS


Fig.17 Waveforms showing the input (V_{is}) to output (V_{os}) propagation delays.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V _{is}	
t _{PZH}	V _{EE}	V _{CC}	
t _{PZL}	V _{CC}	V_{EE}	
t _{PHZ}	V _{EE}	V_{CC}	
t _{PLZ}	V _{CC}	V_{EE}	
others	open	pulse	

			t _r ; t _f		
FAMILY	AMPLITUDE	V _M	f _{max} ; PULSE WIDTH	OTHER	
74HC	V _{CC}	50%	< 2 ns	6 ns	
74HCT	3.0 V	1.3 V	< 2 ns	6 ns	

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

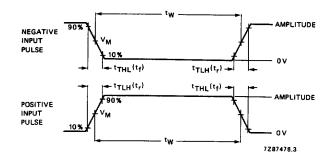

 $t_r = t_f = 6$ ns; when measuring t_{max} , there is no constraint on t_r , t_f with 50% duty factor.

Fig.20 Test circuit for measuring AC performance.

Conditions

TEST	SWITCH	V _{is}	
t _{PZH}	V _{EE}	V _{CC}	
t _{PZL}	V_{CC}	V _{EE}	
t _{PHZ}	V _{EE}	V _{CC}	
t _{PLZ}	V _{CC}	V _{EE}	
others	open	pulse	

	AMPLITUDE		t _r ; t _f		
FAMILY		V _M	f _{max} ; PULSE WIDTH	OTHER	
74HC	V _{CC}	50%	< 2 ns	6 ns	
74HCT	3.0 V	1.3 V	< 2 ns	6 ns	

C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 R_T = termination resistance should be equal to the output impedance Z_O of the pulse generator.

 $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint on t_r , t_f with 50% duty factor.

Fig.21 Input pulse definitions.

8-channel analog multiplexer/demultiplexer with latch

74HC/HCT4351

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".