

86mm 1U Front End DC-DC Power Supply Converter

D1U86-D-1600-12-HB3DC variant shown

FEATURES

- 1600W output power
- 93% efficiency at half load
- 12V main output
- 12V standby output of 30W
- 1U height: 3.4" x 7.75" x 1.59'
- 38.6 Watts per cubic inch density
- N+1 redundancy, including hot plugging (up to
- 8 in parallel)
- Current sharing on 12V main output, ORing FET
- Overvoltage, overcurrent, overtemperature protection
- Internal cooling fan (variable speed)
- PMBusTM / I²C interface monitoring and control
- RoHS compliant
- Two Year Warranty

Available now at www.murata-ps.com/en/3d/acdc.html

PRODUCT OVERVIEW

The D1U86-D-1600-12-HBxDC series are highly efficient 1600 watt, DC input front end supplies with a 12V main output and a 12V (30W) standby. They have current sharing and up to 8 supplies may be operated in parallel. The supplies may be hot plugged, they recover from overtemperature faults, and have logic and PMBus monitoring and control. Their low profile 1U package and >38.6W/cubic inch power density make them ideal for delivering reliable, efficient power to servers, workstations, storage systems and other 12V distributed power systems.

ORDERING GUIDE										
Part Number	Power Output	Main Output	Standby Output ₁	Airflow	Handle Colour					
D1U86-D-1600-12-HB4DC	1600W	10\/do	10\/do	Back to front	Red					
D1U86-D-1600-12-HB3DC	100000	12Vdc	12Vdc	Front to back	Blue					

INPUT CHARACTERISTICS						
Parameter	Conditions	Min.	Nom.	Max.	Units	
Input Voltage Operating Range		-40	-48	-72	Vdc	
Turn-on Voltage	Ramp up	-43	-43.5	-44	Vdc	
Turn-off Voltage	Ramp down	-38.5	-39	-39.5	vuc	
Maximum Current at Vin = -40Vdc	1600W			47	Adc	
DC Line Inrush Book Current	Cold start between 0 to	40		50	Apk	
urn-off Voltage laximum Current at Vin = -40Vdd C Line Inrush Peak Current	200msec	72		100	Арк	
	20% load		92			
Efficiency (48V)	50% load		93		%	
	100% load		89		,,,	

OUTPUT VOLTAGE CHARACTERISTICS											
Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units					
	Voltage Set Point	50% load	12.17	12.20	12.23	Vdc					
	Line and Load Regulation		11.4		12.6	Vuc					
12V	Droop			3.10		mV/A					
IZV	Ripple Voltage & Noise ¹	20MHz Bandwidth			120	mV p-p					
	Output Current		0		133.3	Α					
	Load Capacitance		0		10000	μF					
	Voltage Set Point	50% load	11.97	12.0	12.03	Vdc					
	Line and Load Regulation		11.4		12.6	Vuc					
12VSB	Droop			120		mV/A					
12490	Ripple Voltage & Noise ¹	20MHz Bandwidth			120	mV p-p					
	Output Current		0		2.5	Α					
	Load Capacitance		0		350	μF					

Ripple and noise are measured with 0.1 µF of ceramic capacitance and 10 µF of tantalum capacitance on each of the power supply outputs. A short coaxial cable with 50Ω scope termination is used.

For full details go to www.murata-ps.com/rohs

Test Certificate and Test Report

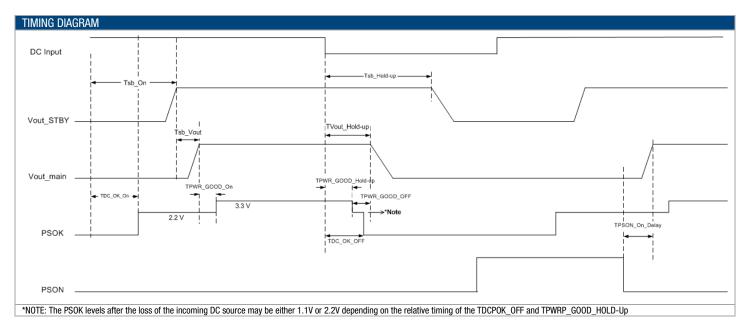
OUTPUT CHARACTERISTICS										
Parameter	Conditions	Min.	Тур.	Max.	Units					
Output Rise Monotonicity	No voltage excursion									
Startup Time	DC ramp up		1.5	3	S					
Transient Response	12V, 50% load step, 1.0A/µs di/dt		600		mV					
Transient nesponse	12VSB, 50% load step, 1.0A/µs di/dt		600		IIIV					
Current sharing accuracy (up to 8 in parallel)2	At 100% load			±5	%					
Hot Swap Transients	All outputs remain in regulation			5	%					
Holdup Time	At full load (48V input)	1			ms					

ENVIRONMENTAL CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Storage Temperature Range		-40		85		
Operating Temperature Range		0		55	°C	
Operating Humidity	Noncondensing	5		90		
Storage Humidity		5		95	%	
Altitude (without derating at 45°C)		3000			m	
Shock	30G non-operating					
Operational Vibration	1G, 10-500Hz, 1.6G (non-operational)					
MTBF	Per Telcordia SR-322 M1C1@ 40°C	500K			hrs	
Safety Approvals	CSA/UL 60950-1-07-2nd Ed. IEC 60950-1:2005 (2nd Edition) w Am. 1:2009 CE Marking per LVD DIRECTIVE 2006/95/EC					
Input Fuse	Power Supply has internal 60A/170VDC fast	blow fuse on the	DC line input			
Weight	1.108kg (2.44lbs)					

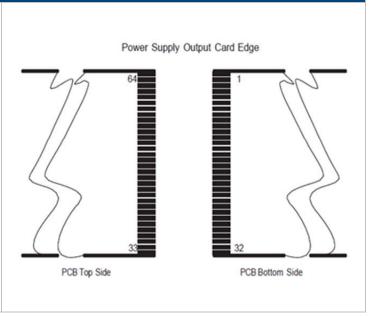
² The load current of 100% refers to each power module max load connected in an N+1 configuration; therefore the total load will be "N" x 100% load of each module. The share accuracy of ±5% is a fixed percentage irrespective of the total loading and number of units connected in parallel.

PROTECT	PROTECTION CHARACTERISTICS											
Output Voltage	Parameter Londing				Max.	Units						
	Overtemperature (intake)	An OTP warning will be issued via the PMBus interface when the air inlet exceeds 70°C; however the power module shall not shut down until critical internal hotspot temperatures are exceeded.		70		°C						
	Overtemperature (hotspots)		55-60									
	Overvoltage	Latching	13.2		14.4	V						
12V	Overcurrent	For overloads (slow) over current events a 147A nominal constant current will be sustained until the output voltage drops below 3VDC. At this point the unit shall shut down after a 1sec period and remain in that condition for 10secs. The cycle will then repeat. For severe (short circuit) over current events the unit shall shut down within 1ms and remain in this condition for 200ms before attempting a re-start. the unit shall attempt 10 shutdown/re-start cycles before permanently latching off. It will then be necessary to either recycle the DC input or toggle the PSON# input.	137		154							
10VCD	Overvoltage	Latching	13.2		14.4	V						
12VSB	Overcurrent	Auto-recovery	2.75		3.0	А						

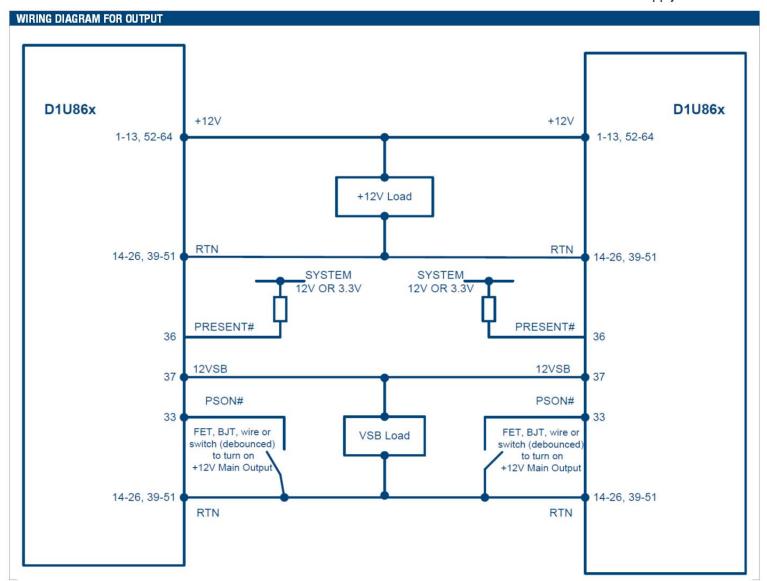
ISOLATION CHARACTERISTICS										
Parameter	Conditions	Min.	Тур.	Max.	Units					
Inculation Cafety Peting / Test Voltage	Input to Output - Basic	1500			Vdc					
Insulation Safety Rating / Test Voltage	Input to Chassis - Basic	1500			Vdc					
Isolation	Output to Chassis	500			Vdc					


EMISSIONS AND IMMUNITY		
Characteristic	Standard	Compliance
Conducted Emissions	FCC 47 CFR Part 15/CISPR 22/EN55022	Class A, 6dB margin
ESD Immunity	IEC/EN 61000-4-2	Level 3 criteria A
Radiated Field Immunity	IEC/EN 61000-4-3	Level 3 criteria B
Electrical Fast Transient Immunity	IEC/EN 61000-4-4	Level 3 criteria A
Surge Immunity	IEC/EN 61000-4-5	Level 2 criteria B
Radiated Field Conducted Immunity	IEC/EN 61000-4-6	Level 3 criteria A
Magnetic Field Immunity	IEC/EN 61000-4-8	3 A/m criteria B

STATUS AND CONT									
Signal Name	1/0	Description							erface Details
PSOK (Output OK)	Output	"digital" signal that logic signals are as 1. DC_OK_ 2. PWR_GO 3. PS_FAUL	2. PWR_GOOD_H					prov	h internal signal is buffered and vided with a series or pull up stor: DC_0K_H; 1K62 series resistor PWR GOOD H; 3K32 series
		upon the three inter	rnal logic signa	ıls:	alogue levels	or operation or the	o signar dependent		resistor
		PSUK TRUTH TA	IBLE VS. ANALU	JG UUTPUT				_	DC FAULT L. a 101/ mull um
		DC_OK_H P	WR_GOOD_H	PS_FAULT_L	Р	SOK	OPERATION MODE	3.	PS_FAULT_L; a 10K pull up resistor to VDD_OR (an internally
		0	0	1	< 0.1Vdc		No DC Input		derived 3.3VDC rail)
		0	1	1	(1/3) VDD		Invalid	Tho	embedded truth table shows the
		1	0	1	(2/3) VDD	VDD = 3.3Vdc	Standby	appropriate levels.	
		1	1	1	VDD		Power Good		· · · · · · · · · · · · · · · · · · ·
		X	Х	0	0.2-0.4Vdc		PS Fault		
		The timing relations	ship of this sigr	nal is shown in	the Timing Sp	ecification section	that follows.		
PS_INTERRUPT (FAULT/WARNING)	Output	The signal output is is intended to alert correctly (within specified the signal will reverse removed.	the system. Th ecified limits).	is output must	be driven high	when the power	is operating	A lo A lo Driv	ed up internally via 10K to 3.3Vdc. gic high >2.0Vdc gic low <0.8Vdc en low by internal buffer (open n output).
PRESENT#	Output	Based on the indust of an (installed) pow Main 12Vdc output. The signal is also diconjunction with the To "enable" the Ma The value of the pul 1. If the signal is resistor value s	ver module with the content of the c	trol the power rand is provided ut the signal regaries with the ap to the 12VSB of the a 3.3Vdc rai	nodule during on a short "la juires to be pu oplied voltage output then the	r it is also intende hot plug insertion st to make; first to illed "high" with rail and is as follo e resistor value sh	d to "Enable" the /extraction in b break" signal pin. espect +12V_GND. ws: ould be 21ΚΩ	of the following of the	voltage level on the system side the PSPRESENT# signal will be as lows: When the power module is not unstalled the voltage will be as per the rail to which it is pulled up to 3.3Vdc or 12Vdc) When the power module is unstalled the voltage will be pulled down to 0.54Vdc ±5%).
PS_ON (Power Supply Enable/Disable	Input	The PS_ON can be "enable" the Main and Alternatively the sig switch between "en The signal is pulled power supply main in the low state the The 12Vdc output with Cycling this signal si	12Vdc output. Inal can be con nable/disable": up internally to 12Vdc output v signal input sh vill be disabled	nected via the l states. o the internal ho will be enabled nall source a no when the input	host system e busekeeping s when this sign minal 1.2mAd is driven high	lectronics to provi upply (within the nal is pulled low to c.	de the ability to power supply). The 0 +12V_GND.	A lo	ed up internally via 10K to 3.3Vdc. gic high >2.0Vdc gic low <0.8Vdc It is via CMOS Schmitt trigger er.

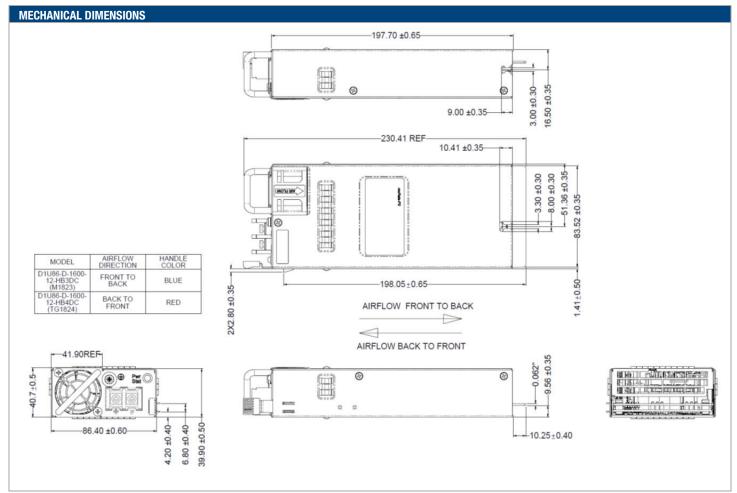

Signal Name	1/0	Description			Interface Details
ADDR (Address Select)	Input	An analogue input that is used to set the microprocessor) used during digital com Connection of a suitable resistor to +12 will configure the required address.	nmunications.	,	DC voltage between the limits of 0 and +3.3Vdc.
		HEX Address Combinations by	Analogue ADDR External Resi	stance Value	
		ADDR External Resistance to	Power Module Secondary	Power Module	
		RTN/Ground	Main Controller (Serial Slave	EEPROM (Serial	
		$(KΩ; \pm 5\% \text{ Tolerance})$	Address)	Slave Address)	
		0.82	0xB0	0xA0	
		2.7	0xB2	0xA2	
		5.6	0xB4	0xA4	
		8.2	0xB6	0xA6	
		15	0xB8	0xA8	
		27	0xBA	0xAA	
		56	0xBC	0xAC	
		180	0xBE	0xAE	
SCL (Serial Clock)	Both	A serial clock line compatible with PMBu Requirements Rev 1.1. No additional internal capacitance is add The signal is provided with a series isolar event that the power module is unpower	ed that would affect the speed of the tor device to disconnect the internal	e bus.	V_{IL} is 0.8V maximum V_{OL} is 0.4V maximum when sinking 3mA V_{IH} is 2.1V minimum
SDA (Serial Data)	Both	A serial data line compatible with PMBus Requirements Rev 1.1. The signal is provided with a series isola event that the power module is unpower	TM Power Systems Management Pro tor device to disconnect the internal		VIL is 0.8V maximum Vol is 0.4V maximum when sinking 3mA VIH is 2.1V minimum
IMONITOR	Analogue Voltage	The current monitor signal is an analogu provided by a single unit. If the power m then the indicated current (proportional t If the power module is one of a number indicated current should be considered a that of the indicated current of a single n For a single unit the voltage of the signal For two identical units sharing the same sharing (i.e. 50% module load capability	Analogue voltage: +8V maximum; 10K to +12V_GND		

STATUS INDICATOR CONDITIONS								
	LED State	Mode	Operating Condition					
1.	Off	DC Turn-off	The incoming DC source is below the minimum power module turn-on specification					
2.	Green – blinking 1Hz	Standby	The power module VStandby output is operating within normal parameters and main output is disabled					
3.	Green – solid	Power-good	The power module VStandby & Main outputs are operating within normal parameters and delivering power					
4.	Yellow – blinking 1Hz	Warning	A warning condition within the power supply has been detected					
5.	Yellow – solid	Fault	A fault condition within the power supply has been detected.					


TIMING SPECIFICATIONS				
Parameter	Description	Min	Max	Unit
Tsb_0n	Delay from DC being applied to standby output being within regulation	0	3000	ms
Tsb_Vout	Delay from standby output to main output voltage being within regulation	50	500	ms
TPWR_G00D_0n	Delay from output voltages within regulation limits to PWR_GOOD assertion	20	500	ms
TVout_Hold-up	Delay from loss of AC to main output being out of regulation	1		ms
Tsb_Hold-up	Delay from loss of AC to standby output being out of regulation	20	2000	ms
TPWR_G00D_0FF	Delay from de-assertion of PWR_GOOD to output falling out of regulation	1		ms
TPSON_On_Delay	Delay from PSON assertion to output being within regulation	300	500	ms

OUTPUT AND SIGNAL SPECIFICATION						
Pin#	Function	Pin Type	Description			
14-26, 39-51	RTN	Power Ground	Power and Standby Return			
1-13, 52-64	12V	Power	12V Output			
37	12VSB	Power	12V Standby Output			
38	PSINTERRUPT	Output	Active low; interrupt line for power supply fault & warning detection as per			
36	PRESENT#	Input	Power Supply Present Signal (shortest			
35	PSOK*	Analog output	Combination of their power supply output indicator signals: 1. DC input 0K 2. Power Good 3. Power Supply Fault			
34	ISHARE	Analog I/O	Analog representation of main outpu current. Typical analog voltage shall be 60.15mV/Amp of main output current.			
33	PSON#	Input	Power Supply on/off control signal			
32	SCL	Input	SMBus/PMBus Clock			
31	SDA	1/0	SMBus/PMBus Data			
30	GND	Analog I/O	Power Supply Signal Ground			
29	N/A	N/A	Reserved; no User connection			
28	N/A	N/A	Reserved; no User connection			
27	ADDR	Analog input	PMBus Address			

86mm 1U Front End DC-DC Power Supply Converter


CURRENT SHARING NOTES

Main Output: Current share is achieved using the droop method. Nominal output voltage (12.20V) is achieved at 50% load and output voltage changes at a rate of 3.10mv per amp. Startup of parallel power supplies is not internally synchronized. If more than 1600W combined power is needed, start-up synchronization must be provided by using a common PS_ON signal. To account for $\pm 5\%$ full load current sharing accuracy and the reduction in full load output voltage due to droop, available output power must be derated by 10% when units are operated in parallel. Internal ORing FETs are provided.

Standby output can be tied together for redundancy but total combined output power must not exceed 30W; Internal MOSFET ORing devices are used.

86mm 1U Front End DC-DC Power Supply Converter

- 1. DC input connector: Terminal Block, Dinkle Enterprise: Part No. DT-7C-B14W-02
- 2. Dimensions: 3.4" x 7.75" x 1.59" [86mm x 196.85mm x 39.9mm]
- 3. This drawing is a graphical representation of the product and may not show all fine details.
- 4. Reference File: D1U86-D-1600-12-HBxDC (M1823-M1824)_Drawing for Product Datasheet_20160106.PDF

MATING CONNECTOR	
Part Number	Description
FCI 10053363-200LF	Right Angle
FCI 10046971-008LF	Vertical

OPTIONAL ACCESSORIES			
Description	Part Number		
12V D1U86P Output Connector Card	D1U86P-12-CONC		

APPLICATION NOTES		
Document Number	Description	
ACAN-50	D1U86P Output Connector Card: http://power.murata.com/datasheet?/data/apnotes/acan-50.pdf	
ACAN-54	D1U86D Communication Protocol: http://power.murata.com/datasheet?/data/apnotes/acan-54.pdf	

Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048 -1151 U.S.A.
ISO 9001 and 14001 REGISTERED

This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy:

Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications subject to change without notice.

@2016 Murata Power Solutions, Inc.