# xCORE Microphone Array Hardware Manual

#### IN THIS DOCUMENT

- ▶ Features
- ▶ Introduction
- Clock sources and distribution
- ▶ Stereo DAC with headphone amplifier
- ▶ MEMS Microphones
- ► Ethernet Connectivity
- ► General purpose user interface
- ► Expansion Header
- ▶ USB Port
- ► Flash Memory
- xSYS connector
- xCORE Microphone Array Portmap
- ▶ Operating requirements
- Dimensions
- ▶ RoHS and REACH
- Schematics

xCORE Microphone Array evaluation board is an application specific design targeted at microphone aggregation and array microphones used Voice User Interface (VUI) applications. It integrates all the necessary building blocks including:

- multiple omni-directional microphones
- on-board low-jitter clock sources
- configurable user input buttons
- ethernet, USB2.0 device and/or I2S/I2C host connectivity

Publication Date: 2016/12/16 XMOS © 2016, All Rights Reserved





Figure 1: xCORE Microphone Array evaluation board - top



Figure 2: xCORE Microphone Array evaluation board bottom



### 1 Features

The xCORE Microphone Array block diagram is shown below. It includes:

- ▶ xCORE-200 (XUF216-512-TQ128) multicore microcontroller device
- ► Seven AKUSTICA AKU441 MEMS microphones
- ▶ A micro-USB connector for USB2.0 device connectivity and power
- ▶ An RJ45 connector for 10/100Mbps Ethernet connectivity
- An expansion header for I2S, I2C and/or other connectivity and control solutions
- Four general purpose push-button switches
- ▶ 12 user-controlled LEDs
- ▶ Low-jitter clock source
- An xSYS connector for an xTAG debug adapter

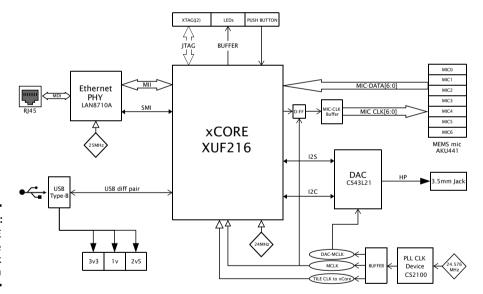
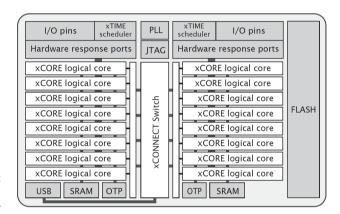




Figure 3: xCORE Microphone Array block diagram

#### 2 Introduction

The xCORE Microphone Array evaluation board is based on a two-tile xCORE-200 XUF216-512-TQ128 device, which contains 16 32-bit logical processing cores that deliver up to 2000 MIPS compute and integrates 2MBytes Quad Serial Peripheral Interface (QSPI) flash.

For general information on xCORE-200 devices see the xCORE-200 Architecture Overview<sup>1</sup>. For device specific information on the XUF216-512-TQ128 device see XUF216-512-TQ128 Datasheet<sup>2</sup>.



xCORE-200 XUF216-512-TQ128 device

### 3 Clock sources and distribution

The board includes three clock sources:

- xCORE-200 reference clock 24MHz oscillator (Y1)
- ► Ethernet PHY reference clock 25MHz crystal (X1)
- ► Low jitter clock source 24.576MHz oscillator, used as reference clock to the CS2100-CP (CirrusLogic) Fractional-N PLL (U22).

The CS2100 generates a low-jitter output signal that is distributed to the xCORE-200 device (Tile1 & MCLK) and DAC (MIC-CLK). The CS2100 device is configured using the I2C interface.

<sup>2</sup>http://www.xmos.com/published/xuf216-512-tq128-datasheet?version=latest



http://www.xmos.com/published/xcore-architecture

## 4 Stereo DAC with headphone amplifier

A CS43L21 stereo DAC with integrated headphone amplifier is used to generate audio output on a 3.5mm audio jack. The CS43L21 is connected to the xCORE-200 through an I2S interface and is configured using an I2C interface.

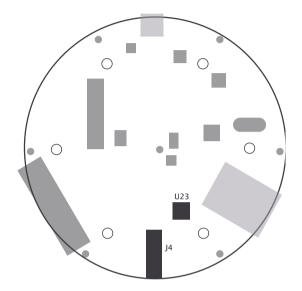



Figure 5: Stereo DAC/HPA components

The CS43L21 stereo DAC/HPA device is configured using the I2C bus.

| Pin Port |      | Signal       |  |  |
|----------|------|--------------|--|--|
| X1D26    | P4E0 | I2C_SCL      |  |  |
| X1D27    | P4E1 | I2C_SDA      |  |  |
| X1D28    | P4F0 | DAC_RST_N    |  |  |
| X1D36    | P1M0 | I2S_BCLK     |  |  |
| X1D37    | P1N0 | I2S_LRCLK    |  |  |
| X1D39    | P1P0 | I2S_DAC_DATA |  |  |

The addresses of the CS2100-CP and CS43L21 devices on the I2C bus are shown below.

| Device    | Ref ID | Address   |      |
|-----------|--------|-----------|------|
| CS2100-CP | U22    | 0b1001110 | 0x4E |
| CS43L21   | U23    | 0b1001010 | 0x4A |



## 5 MEMS Microphones

The AKU441 MEMS microphones used in this evalution board have a bottom port and measure 4mmx3mmx1mm, suitable for voice interface applications.

One microphone is placed at the center of the board (MIC\_0). The remaining six microphones are distributed equidistant around the board edge.

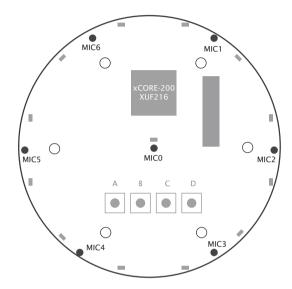



Figure 6: MEMS microphones

The microphone signals are mapped onto the xCORE-200 device as show in Figure 7:

| Microphone | xCORE GPIO | Port |
|------------|------------|------|
| MIC_CLK    | X0D12      | P1E0 |
| MIC_0      | X0D14      | P4C0 |
| MIC_1      | X0D15      | P4C1 |
| MIC_2      | X0D16      | P4D0 |
| MIC_3      | X0D17      | P4D1 |
| MIC_4      | X0D18      | P4D2 |
| MIC_5      | X0D19      | P4D3 |
| MIC_6      | X0D20      | P4C2 |

Figure 7: MEMS microphone xCORE GPIO

## 6 Ethernet Connectivity

10/100 Mbps Ethernet connectivity consists of Microchip LAN8710A Ethernet PHY (U20) and an RJ45 connector (J3) with integrated magnetics. The PHY uses the 25MHz crystal as a reference clock.

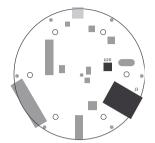



Figure 8: Ethernet components

The MII signals are mapped onto the xCORE-200 device as shown in Figure 9:

| RGMII signal | xCORE GPIO | Port  |
|--------------|------------|-------|
| RX_CLK       | X1D00      | P1 A0 |
| TX_CLK       | X1D01      | P1 B0 |
| RX0          | X1D02      | P4A0  |
| RX1          | X1D03      | P4A1  |
| RX2          | X1D08      | P4A2  |
| RX3          | X1D09      | P4A3  |
| TX0          | X1D04      | P4B0  |
| TX1          | X1D05      | P4B1  |
| TX2          | X1D06      | P4B2  |
| TX3          | X1D07      | P4B3  |
| RXDV         | X1D10      | P1C0  |
| TXEN         | XIDII      | P1 D0 |
| MDC          | X1D14      | P4C0  |
| MDIO         | X1D15      | P4C1  |
| ETH_RST_N    | X1D29      | P4F1  |
| RXER         | X1D35      | P1L0  |

Figure 9: Ethernet xCORE GPIO



## 7 General purpose user interface

The board has 13 LEDs that are controlled by the xCORE-200 GPIO.

 $LED\_0$  -  $LED\_11$  (D2-D13) are positioned around the edge of the board, one each side of every microphone.  $LED\_12$  (D14) is positioned next to the middle microphone.

A green LED (PGOOD) by the USB connector indicates a 3V3 power good signal.

Four general purpose push-button switches are provided. When pressed, each button creates a connection from the I/O to GND. To ensure correct behaviour, the port connected to the buttons (P4A) must always be defined as an input.

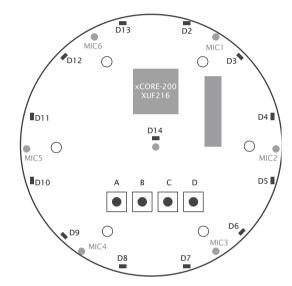



Figure 10: General purpose user interface components

The signal mapping of the user interface components is shown in Figure 11

| UI signal | xCORE GPIO | Port  |
|-----------|------------|-------|
| LED_0     | X0D26      | P4E0  |
| LED_1     | X0D27      | P4E1  |
| LED_2     | X0D28      | P4F0  |
| LED_3     | X0D29      | P4F1  |
| LED_4     | X0D30      | P4F2  |
| LED_5     | X0D31      | P4F3  |
| LED_6     | X0D32      | P4E2  |
| LED_7     | X0D33      | P4E3  |
| LED_8     | X0D43      | P1K0  |
| LED_9     | X0D35      | P1L0  |
| LED_10    | X0D36      | P1 M0 |
| LED_11    | X0D37      | P1 N0 |
| LED_12    | X0D38      | P100  |
| BUTTON_A  | X0D02      | P4A0  |
| BUTTON_B  | X0D03      | P4A1  |
| BUTTON_C  | X0D08      | P4A2  |
| BUTTON_D  | X0D09      | P4A3  |

Figure 11: User interface GPIO

The LED output must be set low to light the corresponding LED.

### 8 Expansion Header

The board has an expansion header containing 7 general purpose IOs, controlled by the xCORE-200, and an audio MCLK.

By removing R67 and inserting a 0R link into R17, the expansion header audio MCLK can be used as an alternative to the CS2100-CP (CirrusLogic) Fractional-N PLL (U22) output.

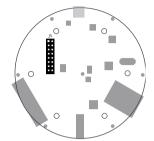



Figure 12: Expansion header location

The signal mapping of the expansion header is shown in Figure 13

| Header pin | xCORE GPIO | Port  |
|------------|------------|-------|
| 1          | X0D22      | P1G0  |
| 2          | GND        |       |
| 3          | X0D23      | P1 H0 |
| 4          | GND        |       |
| 5          | X0D00      | P1 A0 |
| 6          | GND        |       |
| 7          | X0D11      | P1 D0 |
| 8          | GND        |       |
| 9          | X0D24      | P110  |
| 10         | X0D39      | P1 P0 |
| 11         | GND        |       |
| 12         | X0D25      | P1J0  |
| 13         | 3V3        |       |
| 14         | GND        |       |
| 15         | EXT_MCLK   |       |
| 16         | GND        |       |

Figure 13: Expansion header GPIO



### 9 USB Port

The USB Micro-B receptacle (J1) is connected to the USB PHY integrated in the XUF216 device, and provides power for the on-board circuits, and USB interface connectivity. Voltage tolerance should be as per USB VBUS specification values.

The power source is used to generate the following voltage rails:

- ► +1V0 (Core voltage to XMOS device)
- ► +2v5 (for headphone amplifier in DAC device)
- ► +3v3 for GPIOs and other accessory devices

Proper power-on sequence is indicated by power good LED (D1) in bottom side of the board.

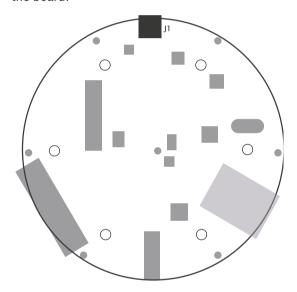



Figure 14: USB components

NOTE: J1 must be connected at all times to provide power to the board.

## 10 Flash Memory

The XUF216-512-TQ128 device includes 2MBytes of QSPI flash memory, which is interfaced by the GPIO connections shown in Figure 15:

| QSPI connection | Pin   | Port |
|-----------------|-------|------|
| QSPI_SS         | X0D01 | P1B  |
| QSP_D0          | X0D04 | P4B0 |
| QSP_D1          | X0D05 | P4B1 |
| QSP_D2          | X0D06 | P4B2 |
| QSP_D3          | X0D07 | P4B3 |
| SPI_CLK         | X0D10 | P1C  |

Figure 15: QSPI Flash

## 11 xSYS connector

A standard XMOS xSYS interface (J2) is provided to allow host debug of the board via JTAG.

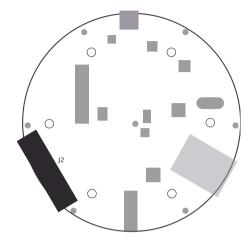



Figure 16: xsYS connector

| XSYS signal | xCORE GPIO | Header pin       | Description                                        |
|-------------|------------|------------------|----------------------------------------------------|
| TMS         | See note   | 7                | JTAG Test Mode Select                              |
| TCK         | See note   | 9                | JTAG Test Clock                                    |
| TDI         | See note   | 5                | JTAG Test Data In - from debug<br>adapter to xCORE |
| TDO         | See note   | 13               | JTAG Test Data Out - from xCORE to debug adapter   |
| RST_N       | See note   | 15               | System Reset - active low, resets xCORE device     |
| GND         |            | 4, 8, 12, 16, 20 | Ground                                             |
| XL_UP1      | X0D43      | 6                | XMOS link, uplink bit 1                            |
| XL_UP0      | X0D42      | 10               | XMOS link, uplink bit 0                            |
| XL_DN1      | X0D40      | 14               | XMOS link, downlink bit 1                          |
| XL_DN0      | X0D41      | 18               | XMOS link, downlink bit 0                          |

Figure 17: XSYS Connector Pinout

### Notes:

▶ JTAG connections occupy dedicated connections



## 12 xCORE Microphone Array Portmap

The table below provides a full description of the port-pin mappings described throughout this document for the xCORE Microphone Array board.

| Pin   | 1-bit    | 4-bit    | 8-bit    | 16-bit     | 32-bit     | Signal     |
|-------|----------|----------|----------|------------|------------|------------|
| X0D00 | $1A^{0}$ |          |          |            |            |            |
| X0D01 | $1B^{0}$ |          |          | _          |            | QSPI_CS    |
| X0D02 |          | $4A^0$   | $8A^{0}$ | $16A^{0}$  | $32A^{20}$ | BUTTON_A   |
| X0D03 |          | $4A^1$   | $8A^1$   | $16A^{1}$  | $32A^{21}$ | BUTTON_B   |
| X0D04 |          | $4B^0$   | $8A^{2}$ | $16A^{2}$  | $32A^{22}$ | QSPI_D0    |
| X0D05 |          | $4B^1$   | $8A^{3}$ | $16A^{3}$  | $32A^{23}$ | QSPI_D1    |
| X0D06 |          | $4B^2$   | $8A^4$   | $16A^{4}$  | $32A^{24}$ | QSPI_D2    |
| X0D07 |          | $4B^{3}$ | $8A^{5}$ | $16A^{5}$  | $32A^{25}$ | QSPI_D3    |
| X0D08 |          | $4A^2$   | $8A^{6}$ | $16A^{6}$  | $32A^{26}$ | BUTTON_C   |
| X0D09 |          | $4A^3$   | $8A^{7}$ | $16A^{7}$  | $32A^{27}$ | BUTTON_D   |
| X0D10 | $1C^{0}$ |          |          |            |            | QSPI_CLK   |
| X0D11 | $1D^{0}$ |          |          |            |            |            |
| X0D12 | $1E^{0}$ |          |          |            |            | MIC_CLK    |
| X0D13 | $1F^0$   |          |          |            |            | MCLK_XCORE |
| X0D14 |          | $4C^{0}$ | $8B^{0}$ | $16A^{8}$  | $32A^{28}$ | MIC_0_DATA |
| X0D15 |          | $4C^1$   | $8B^{1}$ | $16A^{9}$  | $32A^{29}$ | MIC_1_DATA |
| X0D16 |          | $4D^0$   | $8B^{2}$ | $16A^{10}$ |            | MIC_2_DATA |
| X0D17 |          | $4D^1$   | $8B^{3}$ | $16A^{11}$ |            | MIC_3_DATA |
| X0D18 |          | $4D^2$   | $8B^{4}$ | $16A^{12}$ |            | MIC_4_DATA |
| X0D19 |          | $4D^3$   | $8B^{5}$ | $16A^{13}$ |            | MIC_5_DATA |
| X0D20 |          | $4C^{2}$ | $8B^{6}$ | $16A^{14}$ | $32A^{30}$ | MIC_6_DATA |
| X0D21 |          | $4C^{3}$ | $8B^{7}$ | $16A^{15}$ | $32A^{31}$ |            |
| X0D22 | $1G^{0}$ |          |          |            |            |            |
| X0D23 | $1H^0$   |          |          |            |            |            |
| X0D24 | $1I^{0}$ |          |          |            |            |            |
| X0D25 | $1J^{0}$ |          |          |            |            |            |
| X0D26 |          | $4E^0$   | $8C^{0}$ | $16B^{0}$  |            | LED_0      |
| X0D27 |          | $4E^1$   | $8C^{1}$ | $16B^{1}$  |            | LED_1      |
| X0D28 |          | $4F^0$   | $8C^{2}$ | $16B^{2}$  |            | LED_2      |
| X0D29 |          | $4F^1$   | $8C^{3}$ | $16B^{3}$  |            | LED_3      |
| X0D30 |          | $4F^2$   | $8C^{4}$ | $16B^{4}$  |            | LED_4      |
| X0D31 |          | $4F^3$   | $8C^{5}$ | $16B^{5}$  |            | LED_5      |
| X0D32 |          | $4E^2$   | $8C^{6}$ | $16B^{6}$  |            | LED_6      |
| X0D33 |          | $4E^3$   | $8C^{7}$ | $16B^{7}$  |            | LED_7      |
| X0D34 | $1K^{0}$ |          |          |            |            | LED_8      |
| X0D35 | $1L^{0}$ |          |          |            |            | LED_9      |
| X0D36 | $1M^0$   |          | $8D^{0}$ | $16B^{8}$  |            | LED_10     |
| X0D37 | $1N^0$   |          | $8D^1$   | $16B^{9}$  |            | LED_11     |
| X0D38 | $10^{0}$ |          | $8D^{2}$ | $16B^{10}$ |            | LED_12     |
| X0D39 | $1P^{0}$ |          | $8D^{3}$ | $16B^{11}$ |            | LED_OEN    |
| X0D40 |          |          | $8D^4$   | $16B^{12}$ |            | XL_DN1     |
| X0D41 |          |          | $8D^{5}$ | $16B^{13}$ |            | XL_DN0     |
| X0D42 |          |          | $8D^{6}$ | $16B^{14}$ |            | XL_UP0     |
| X0D43 |          |          | $8D^{7}$ | $16B^{15}$ |            | XL_UP1     |

Figure 18: xCORE Microphone Array Portmap: Tile



| Pin   | 1-bit    | 4-bit    | 8-bit    | 16-bit     | 32-bit     | Signal       |
|-------|----------|----------|----------|------------|------------|--------------|
| X1D00 | $1A^0$   |          |          |            |            | ETH_RXCLK    |
| X1D01 | $1B^0$   |          |          |            |            | ETH_TXCLK    |
| X1D02 |          | $4A^0$   | $8A^{0}$ | $16A^{0}$  | $32A^{20}$ | ETH_RXD_0    |
| X1D03 |          | $4A^1$   | $8A^1$   | $16A^{1}$  | $32A^{21}$ | ETH_RXD_1    |
| X1D04 |          | $4B^{0}$ | $8A^{2}$ | $16A^{2}$  | $32A^{22}$ | ETH_TXD_0    |
| X1D05 |          | $4B^1$   | $8A^{3}$ | $16A^{3}$  | $32A^{23}$ | ETH_TXD_1    |
| X1D06 |          | $4B^2$   | $8A^{4}$ | $16A^{4}$  | $32A^{24}$ | ETH_TXD_2    |
| X1D07 |          | $4B^{3}$ | $8A^{5}$ | $16A^{5}$  | $32A^{25}$ | ETH_TXD_3    |
| X1D08 |          | $4A^2$   | $8A^{6}$ | $16A^{6}$  | $32A^{26}$ | ETH_RXD_2    |
| X1D09 |          | $4A^3$   | $8A^{7}$ | $16A^{7}$  | $32A^{27}$ | ETH_RXD_3    |
| X1D10 | $1C^{0}$ |          |          |            |            | ETH_RXDV     |
| XIDII | $1D^{0}$ |          |          |            |            | ETH_TXEN     |
| X1D14 |          | $4C^{0}$ | $8B^{0}$ | $16A^{8}$  | $32A^{28}$ | ETH_MDC      |
| X1D15 |          | $4C^1$   | $8B^1$   | $16A^{9}$  | $32A^{29}$ | ETH_MDIO     |
| X1D16 |          | $4D^0$   | $8B^{2}$ | $16A^{10}$ |            | PLL_SYNC     |
| X1D17 |          | $4D^1$   | $8B^{3}$ | $16A^{11}$ |            |              |
| X1D18 |          | $4D^2$   | $8B^{4}$ | $16A^{12}$ |            |              |
| X1D19 |          | $4D^3$   | $8B^{5}$ | $16A^{13}$ |            |              |
| X1D20 |          | $4C^{2}$ | $8B^{6}$ | $16A^{14}$ | $32A^{30}$ |              |
| X1D21 |          | $4C^{3}$ | $8B^{7}$ | $16A^{15}$ | $32A^{31}$ |              |
| X1D26 |          | $4E^0$   | $8C^{0}$ | $16B^{0}$  |            | I2C_SCLK     |
| X1D27 |          | $4E^1$   | $8C^{1}$ | $16B^{1}$  |            | I2C_SDA      |
| X1D28 |          | $4F^0$   | $8C^{2}$ | $16B^{2}$  |            | DAC_RST_N    |
| X1D29 |          | $4F^1$   | $8C^{3}$ | $16B^{3}$  |            | ETH_RST_N    |
| X1D30 |          | $4F^2$   | $8C^{4}$ | $16B^{4}$  |            |              |
| X1D31 |          | $4F^3$   | $8C^{5}$ | $16B^{5}$  |            |              |
| X1D32 |          | $4E^2$   | $8C^{6}$ | $16B^{6}$  |            |              |
| X1D33 |          | $4E^3$   | $8C^{7}$ | $16B^{7}$  |            |              |
| X1D35 | $1L^{0}$ |          |          |            |            | ETH_RX_ERR   |
| X1D36 | $1M^{0}$ |          | $8D^0$   | $16B^{8}$  |            | I2S_BCLK     |
| X1D37 | $1N^0$   |          | $8D^1$   | $16B^{9}$  |            | I2S_LRCLK    |
| X1D38 | $10^{0}$ |          | $8D^{2}$ | $16B^{10}$ |            | MCLK_TILE1   |
| X1D39 | $1P^0$   |          | $8D^{3}$ | $16B^{11}$ |            | I2S_DAC_DATA |
| X1D40 |          |          | $8D^4$   | $16B^{12}$ |            |              |
| X1D41 |          |          | $8D^{5}$ | $16B^{13}$ |            |              |
| X1D42 |          |          | $8D^{6}$ | $16B^{14}$ |            |              |
| X1D43 |          |          | $8D^7$   | $16B^{15}$ |            |              |

Figure 19: xCORE Microphone Array Portmap: Tile

### 13 Operating requirements

A USB 2.0 high-speed compliant cable of less than 3m in length should be used when operating the xCORE Microphone Array board. XMOS cannot guarantee correct operation of the xCORE Microphone Array board should any other cable be used.

This product is, like most electronic equipment, sensitive to Electrostatic Discharge (ESD) events. Users should operate the xCORE Microphone Array board with appropriate ESD precautions in place.

### 14 Dimensions

This xCORE Microphone Array board has diameter of 90 mm and board thickness of 1.6mm.

### 15 RoHS and REACH

The xCORE Microphone Array board complies with appropriate RoHS2 and REACH regulations and is a Pb-free product.

The xCORE Microphone Array board is subject to the European Union WEEE directive and should not be disposed of in household waste. Alternative requirements may apply outside of the EU.





## 16 Schematics

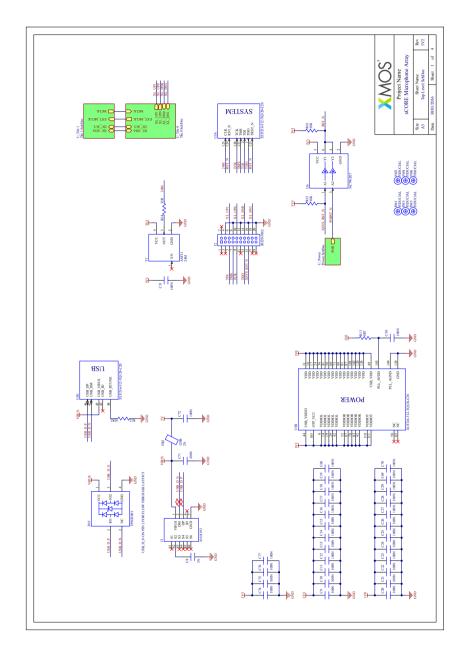



Figure 20: xCORE Microphone Array board -Power entry and xCORE-200 Configuration

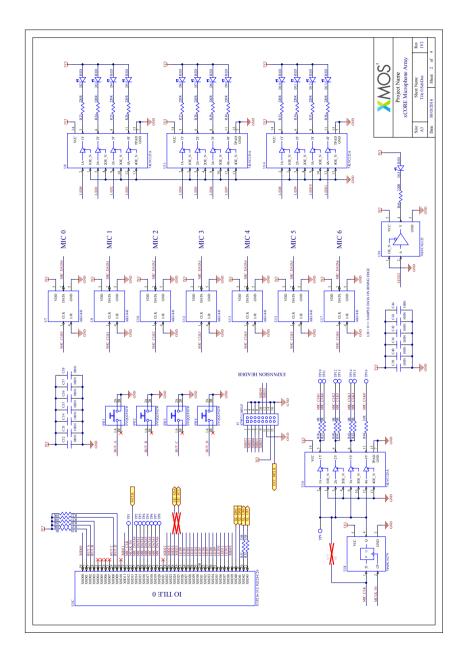



Figure 21: xCORE Microphone Array board -Microphone



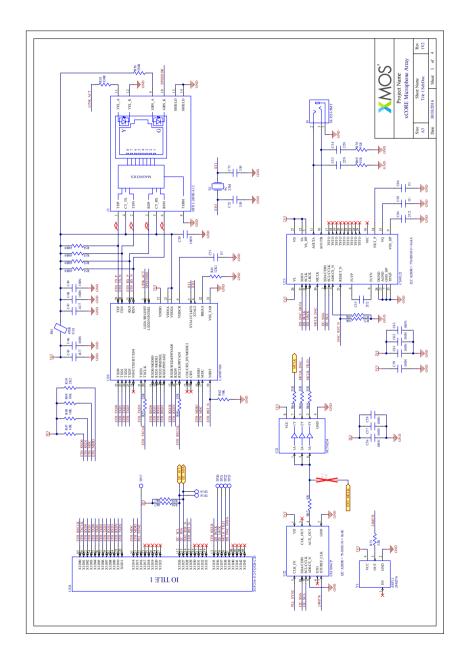
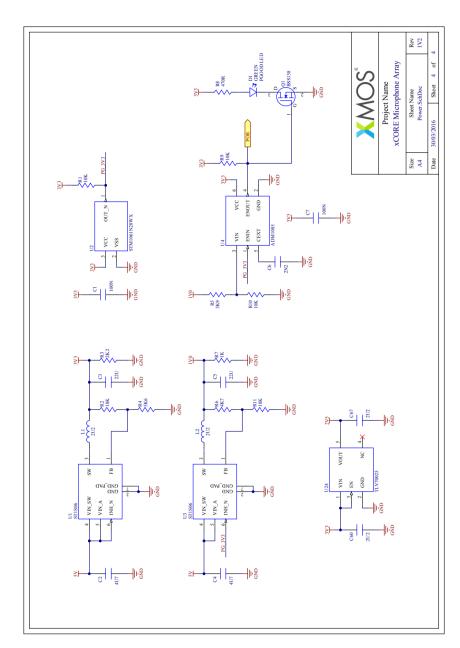




Figure 22:
xCORE
Microphone
Array board Ethernet and
Stereo DAC
with
Headphone
Jack circuitry





xCORE
Microphone
Array board Voltage rail
LDOs and
reset circuit





Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information") and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.